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Different techniques provide different parts of the
waveform
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The signal is a needle in a haystack

Signal from the second detection, GW151226

Hanford Livingston




Known gravitational wave sources are myriad
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Sagittarius A* is about 4 million Mg
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The black hole spectrum is large

Mass Name
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The gravitational wave spectrum is wide and full of /\0
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Quantum fluctuations in early universe
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Holes in galactic nuclei
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LISA is planned to launch in 2034 and directly observe
EMRI (and IMRIs?)
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Self-force research dates back to the 1930s
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Self-force research dates back to the 1930s

Einstein,
Infeld &
Hoffmann Sasaki &
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A self-force breakthrough was made in 1996 by
Mino, Sasaki & Tanaka, and also Quinn & Wald

Gravitational Radiation Reaction to a Particle Motion

Yasushi Mino,"?§ Misao Sasaki,!] and Takahiro Tanaka'}

! Department 0]2) Eal:th (}m.d Sp An axiomatic approach to electromagnetic and gravitational
sara UnNIvers:

2 Department of Physics, Faculty of S . . . . . .
P f Phy y of radiation reaction of particles in curved spacetime

A small mass particle traveling in a cury . ‘
in the lowest order approximation with resp Theodore C. Quinn and Robert M. Wald

Enrico Fermi Institute and Department of Physics

University of Chicago
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Detweiler and Whiting found a particularly convenient
split of the retarded field

Self force via a Green’s function decomposition

Steven Detweiler and Bernard F. Whiting
Department of Physics, PO Box 118440, University of Florida, Gainesville, FL, 32611-8440
(Dated: November 12, 2002)

The gravitational field in a neighborhood of a particle of small mass p moving through curved
spacetime is naturally decomposed into two parts each of which satisfies the perturbed Einstein
equations through O(u). One part is an inhomogeneous field which looks like the p/r field tidally
distorted by the local Riemann tensor. The other part is a homogeneous field that completely
determines the self force of the particle interacting with its own gravitational field, which changes
the worldline at O(u) and includes the effects of radiation reaction. Surprisingly, a local observer
measuring the gravitational field in a neighborhood of a freely moving particle sees geodesic motion
of the particle in a perturbed vacuum geometry and would be unaware of the existence of radiation
at O(p). In the light of all previous work this is quite an unexpected result.
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Worldline convolution was the last method of

regularization implemented AT -

Self-force via Green functions and worldline integration

Barry Wardell,!»? Chad R. Galley,®> Anil Zenginoglu,? Marc Casals, Sam R. Dolan,® and Adrian C. Ottewill!

1 School of Mathematical Sciences and Complex € Adaptive Systems Laboratory,
p(Xﬂ) University College Dublin, Belfield, Dublin 4, Ireland

2Department of Astronomy, Cornell University, Ithaca, NY 14853, USA
3 Theoretical Astrophysics, California Institute of Technology, Pasadena, California USA
* Department of Cosmology, Relativity and Astrophysics (ICRA),
Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, CEP 22290-180, Brazil.
° Consortium for Fundamental Physics, School of Mathematics and Statistics,
University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 TRH, United Kingdom.
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Mode-sum regularization was the first scheme used to

compute the GSF AT .

Mode sum regularization approach for the self-force in black hole spacetime

Leor Barack and Amos Ori
Department of Physics, Technion—Israel Institute of Technology, Haifa, 32000, Israel

(December 5, 1999)

We present a method for calculating the self-force (the “radiation reaction force”) acting on a
charged particle moving in a strong field orbit in black hole spacetime. In this approach, one first
calculates the contribution to the self-force due to each multipole mode of the particle’s field. Then,
the sum over modes is evaluated, subject to a certain regularization procedure. Here we develop
this regularization procedure for a scalar charge on a Schwarzschild background, and present the
results of its implementation for radial trajectories (not necessarily geodesic).

Calculating the gravitational self force in Schwarzschild spacetime

Leor Barack!, Yasushi Mino?, Hiroyuki Nakano®, Amos Ori%, and Misao Sasaki®
! Albert-Finstein-Institut, Max-Planck-Institut fiir Gravitationsphysik, Am Miihlenberg 1, D-14476 Golm, Germany
2 Theoretical Astrophysics, California institute of Technology, Pasadena, California 91125
3 Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
Y Department of Physics, Technion—Israel Institute of Technology, Haifa, 32000, Israel
(May 29,2001)
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Higher-order singular fields produce faster

convergence in [ AT .
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Effective source calculations are the most recent

schemes proposed AT ..

PHYSICAL REVIEW D 76, 044020 (2007)

Scalar-field perturbations from a particle orbiting a black hole using numerical evolution
in 2 + 1 dimensions

Leor Barack and Darren A. Golbourn

School of Mathematics, University of Southampton, Southampton, SO17 1BJ, United Kingdom
(Received 24 May 2007; published 23 August 2007)

We present a new technique for time-domain numerical evolution of the scalar- field generated by a
pointlike scalar charge orbiting a black hole. Time-domain evolution offers an efficient way for
calculating black hole perturbations, especially as input for computations of the local self force acting
on orbiting particles. In Kerr geometry, the field equations are not fully separable in the time domain, and
one has to tackle them in 2 + 1 dimensions (two spatial dimensions and time; the azimuthal dependence is

Regularization of fields for self-force problems in curved spacetime:
foundations and a time-domain application

[an Vega and Steven Detweiler
Institute for Fundamental Theory, Department of Physics,
University of Florida, Gainesville, FL 32611-8440"
(Dated: January 15, 2008)

We propose an approach for the calculation of self-forces, energy fluxes and waveforms arising
from moving point charges in curved spacetimes. As opposed to mode-sum schemes that regularize
the self-force derived from the singular retarded field, this approach regularizes the retarded field
itself. The singular part of the retarded field is first analytically identified and removed, yielding a
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Gauge invariants allow for useful comparisons

A consequence of the gravitational self-force for
circular orbits of the Schwarzschild geometry

Steven Detweiler
Institute for Fundamental Theory, Department of Physics,
University of Florida, Gainesville, FL 32611-8440"
(Dated: April 22, 2008)

A small mass p in orbit about a much more massive black hole m moves along a world line that
deviates from a geodesic of the black hole geometry by O(u/m). This deviation is said to be caused
by the gravitational self-force of the metric perturbation hgp from p. For circular orbits about a
non-rotating black hole we numerically calculate the O(u/m) effects upon the orbital frequency and
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A consequence of the gravitational self-force for
circular orbits of the Schwarzschild geometry

Steven Detweiler
Institute for Fundamental Theory, Department of Physics,
University of Florida, Gainesville, FL 32611-8440"
(Dated: April 22, 2008)

A small mass p in orbit about a much more massive black hole m moves along a world line that
deviates from a geodesic of the black hole geometry by O(u/m). This deviation is said to be caused
by the gravitational self-force of the metric perturbation h,, from . For circular orbits about a
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Two approaches for the gravitational self force in black hole spacetime:
Comparison of numerical results

Norichika Sago!, Leor Barack! and Steven Detweiler?
1School of Mathematics, University of Southampton, Southampton, SO17 1BJ, United Kingdom
2 Institute for Fundamental Theory, Department of Physics,
University of Florida, Gainsville, FL 32611-8440
(Dated: October 14, 2008)

Recently, two independent calculations have been presented of finite-mass ( “self-force”) effects on
the orbit of a point mass around a Schwarzschild black hole. While both computations are based on
the standard mode-sum method, they differ in several technical aspects, which makes comparison
between their results difficult—but also interesting. Barack and Sago [Phys. Rev. D 75, 064021
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The era of gauge invariants has been a time of plenty

Gravitational self-torque and spin precession in compact binaries

Sam R. Dolan,' * Niels Warburton,> Abraham I. Harte,> Alexandre Le Tiec,*? Barry Wardell,> ¢ and Leor Barack’

' Consortium for Fundamental Physics, School of Mathematics and Statistics,
University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, United Kingdom.
2School of Mathematical Sciences and Complex & Adaptive Systems Laboratory,
University College Dublin, Belfield, Dublin 4, Ireland.
3Max-Planck-Institut fiir Gravitationsphysik, Albert-Einstein-Institut, Am Miihlenberg 1, 14476 Golm, Germany.
*Maryland Center for Fundamental Physics & Joint Space-Science Institute,
Department of Physics, University of Maryland, College Park, MD 20742, USA.
>Laboratoire Univers et Théories (LUTh), Observatoire de Paris, CNRS,
Université Paris Diderot, 5 place Jules Janssen, 92190 Meudon, France.
®Department of Astronomy, Cornell University, Ithaca, NY 14853, USA.

"School of Mathematics, University of Southampton, Southampton SO17 1BJ, United Kingdom.
(Dated: March 10, 2014)

We calculate the effect of self-interaction on the “geodetic” spin precession of a compact body in a strong-field
orbit around a black hole. Specifically, we consider the spin precession angle ¢ per radian of orbital revolution
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Even with these benefits, generic orbits on Kerr are

challenging

Barack & Pound, 2018
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Time domain codes can (in theory) perform
self-consistent evolutions
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There continues to be copious research in the

PN + GSF overlap region
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Inspirals with first-order self-force are becoming
more common
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There’s plenty of other self-force research that |

don’t understand yet

Self-force in other dimensions:

Second-order self-force:

el mere ...

Abraham Harte - Tuesday

Sumanta Chakraborty - Tuesday

Adam Pound - Wednesday
Barry Wardell - Wednesday

Kei Yamada - Wednesday
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If we can’t solve the first-order accurately enough,

second-order will be unnecessary

Resonances on Kerr
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A
O =Ky + K e
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—1/2 4+ K1€O
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/ Oscillatory, first-order, dissipative

Adiabatic, first-order, dissipative
+ First-order, conservative

+ Adiabatic, second-order, dissipative

+ More terms if the particle has multipolar structure/spin
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Is the time domain necessary?

Leo Stein:
“The universe exists in the time domain.”

Chuck Evans:

“That’s a very time-domain-centric point of view.”



We should learn from numerical relativity

* Multiple codes + multiple techniques +
multiple gauges are worth the time

* Pseudospectral/DG codes are worth the time

» We always need more people






