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Different techniques provide different parts of the 
waveform

396 Chapter 12 Binary black hole initial data

t
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numerical
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methods

Figure 12.1 The different phases of compact binary inspiral and coalescence. The gravitational wave amplitude
h(t) is sketched schematically and the analysis technique is identified for each phase.

Here Ii j is the reduced quadrupole moment,

I jk ≡
∫

ρ

(
x j xk − 1

3
δ jkr2

)
d 3 x =

∑

A

m A

(
x j xk − 1

3
δ jkr2

)
, (12.7)

the bracket ⟨ ⟩ denotes an average over several orbital periods, and the triple dot denotes
the third time derivative. For a binary at large separation we may treat the stars as point
masses and insert their stellar masses m A and Newtonian trajectories xi (t) into equa-
tion (12.7) to evaluate equations (12.5 ) and (12.6). For a binary orbit with eccentricity e the
emission of gravitational radiation always leads to a decrease in the eccentricity, ė < 0.3

Put differently, gravitational radiation circularizes elliptical orbits. This result implies
that during the late stages of compact binary inspiral, we may approximate the orbit as
circular.4

Exercise 12.1 Consider a Newtonian binary consisting of two point masses m1 and
m2 at a binary separation r . Write the binary’s Hamiltonian H (r,φ, Pr , Pφ), which
is equal to its conserved energy E , as

E = H = 1
2

P2
r

µ
+ 1

2

P2
φ

µr2
− µM

r
, (12.8)

where M = m1 + m2 is the total mass and µ = m1m2/M is the reduced mass. Define
$orb ≡ φ̇ to be the orbital angular velocity, and J ≡ Pφ to be the orbital angular
momentum.

3 Peters (1964 ); see also Lightman et al. (1975 ), Problem 18.7.
4 See also exercise 12.2, which shows that once they become circular, the orbits remain circular as they shrink in radius.

Fig: Baumgarte & Shapiro
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LIGO India 
Coming soon!



The LIGO Collaboration, PRL116:241103 (2016)

The needle in the haystack problem

Signal from the second detection, GW151226 

The signal is a needle in a haystack



Known gravitational wave sources are myriad

Frank Elavsky



Keck/UCLA Galactic Center Group



Keck/UCLA Galactic Center Group



Sagittarius A* is about 4 million M⊙

Zhuravleva, et al.
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The black hole spectrum is large

Mass Name

2 x 1011 M⊙ SDSS J140821.67+025733.2

102 - 104 M⊙ IMBHs??

10-?? M⊙ Micro black holes??

1.5 x 108 M⊙ P2 (in Andromeda)

4 x 106 M⊙ Sagittarius A*

10 - 100 M⊙ LIGO/Virgo BHs

The LIGO Collaboration, PRL116:241103 (2016)

The needle in the haystack problem

5 - 20 M⊙ X-ray binaries



The gravitational wave spectrum is wide and full of 
wonders

lisa.nasa.gov
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Karsten Danzmann - Today 
Stanislav Babak - Today 
Enrico Barausse - Tuesday

Cole Miller - Wednesday 
Ian Harry - Wednesday
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     can be found 
analytically through 
Herculean efforts

hS

Singular Regular
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Detweiler and Whiting found a particularly convenient 
split of the retarded field

Singular Regular

Gμ
S μ′� =

1
2

(Gμ
ret μ′� + Gμ

adv μ′ � − Hμ
μ′ �) Gμ

Rμ′� =
1
2

(Gμ
ret μ′� − Gμ

adv μ′ � + Hμ
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F =
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r2 F = Eq E =
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1. Becomes a chemistry major

2. Becomes a physics major

3. Becomes a philosophy major

3 Outcomes
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□ Ψ(xμ) = 4πρ(xμ) Ψ(xμ) = ∫ Gret(xμ, x′�μ)ρ(x′�μ)d4x′�

zλ(τ)

ρ(xμ)

□ Gret(xμ, x′�μ) = 4πδ(xμ, x′�μ)1.

Fα[zλ] = (local terms) + lim
ϵ→0 ∫

τ−ϵ

−∞
∇αGret(zλ, z′�λ)dτ′�2.
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Worldline convolution was the last method of 
regularization implemented

zλ(τ)

ρ(xμ)

Self-force available for any 
worldline passing through P
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Mode-sum regularization was the first scheme used to 
compute the GSF

(December 5, 1999)

2001
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Higher-order singular fields produce faster 
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Effective source codes are well-suited to 
self-consistent evolutions

□ ΨR = 4πρeff
D2zμ

dτ2
=

q
m

(gμν + uμuν)∇νΨR

The Good

•No singular fields

•Generic trajectories

•Works at second order

The Bad

•Computationally expensive

•Effective source is cumbersome
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Time domain Frequency domain

• Finite difference
• Pseudo-spectral
• Discontinuous Galerkin
• 2 space + 1 time 

• Numerical integration
• Numeric MST
• Analytic MST + PN
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Regge-Wheeler
• Convenient field equations 
• Singular field not easily defined 
• Not defined on Kerr

Lorenz
• Messy field equations 
• Singular field well defined

Radiation
• Convenient field equations on Kerr 
• Reconstruction is a bit messy 
• Care must be taken with gauge singularities 

Fα
RW ≠ Fα

L ≠ Fα
rad

Jonathan Thompson - Wednesday
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Define a radius in terms of observables

M

m

rm

rM

v

v2
Ω =

GM
RΩ (1 −

4
3

m
M

+ ⋯)

RΩ = ( GM
Ω2 )

1/3
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•Codes
•Regularization techniques
•PN & GSF

1. Allows comparisons between:

Gauge invariants allow for useful comparisons

3. EOB calibration

2. Keeps you honest •What does gauge invariant mean?
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•ODEs

•Discrete spectra

•Exponential convergence

•Fast

•Teukolsky equation decomposes 

•Dissipative/conservative split

•Evolve with osculating geodesics
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Maarten van de Meent - Next

Zachary Nasipak - Today
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Thornburg, Wardell, 2017 Heffernan, et al., 2017

Jonathan Thornburg - Today Peter Diener - Tuesday
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Inspirals with first-order self-force are becoming 
more common

Warburton, Osburn, Evans, 2017

Spinning secondary

Thomas Osburn - Wednesday

van de Meent, Warburton, 2018

Fast inspirals

Niels Warburton - WednesdaySarp Akcay - Today
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don’t understand yet

Self-force in other dimensions:
Abraham Harte - Tuesday

Sumanta Chakraborty - Tuesday

Second-order self-force:

Adam Pound - Wednesday

Barry Wardell - Wednesday

Kei Yamada - Wednesday

And more …
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If we can’t solve the first-order accurately enough, 
second-order will be unnecessary

Φr = κ0ϵ−1 + κ1/2ϵ−1/2 + κ1ϵ0

+ First-order, conservative

+ Adiabatic, second-order, dissipative

+ More terms if the particle has multipolar structure/spin

Adiabatic, first-order, dissipative

Resonances on Kerr

Oscillatory, first-order, dissipative
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Is the time domain necessary?

Leo Stein:

Chuck Evans:

“The universe exists in the time domain.”

“That’s a very time-domain-centric point of view.”



We should learn from numerical relativity

• Multiple codes + multiple techniques + 
multiple gauges are worth the time 

• Pseudospectral/DG codes are worth the time 

• We always need more people



Thank you!


