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Metric perturbations

assume background metric gab is Ricci-flat, vacuum,
satisfies Einstein eqns (e.g., Schwarzschild, Kerr)
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where h̄ab = hab −
1
2gabh, � = |c

|c , and the covariant derivatives
and index raising/lowering are all with respect to the background metric

Lorenz gauge condition h̄ab
|b = 0 zeros the red terms,

leaving a wave equation (hyperbolic, uncoupled in principal part):

�h̄ab + 2Rc
a
d
bh̄cd = −16πTab

⇒ nice for time-domain evolutions
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Lorenz gauge properties

Point particles

Lorenz gauge is well-behaved in the presence of point-particle perturbations:
the metric perturbation from a point particle is

• localized (∼ 1/r falloff away from the particle)

• nonsingular everywhere away from the particle

• approximately spherically symmetric at the particle
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the metric perturbation from a point particle is

• localized (∼ 1/r falloff away from the particle)

• nonsingular everywhere away from the particle

• approximately spherically symmetric at the particle

Effective-source regularization

We know how to construct puncture functions of various orders
for effective-source regularization in the Lorenz gauge

Mode-sum regularization

Individual Yℓm modes of h̄ab are finite at a point particle, and self-force
regularization parameters are known for generic orbits in Schwarzschild & Kerr

In general these nice properties do not hold for other gauges,
e.g., Regge-Wheeler or radiation gauge (infinite-string gauge singularities).
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Consider simplest case: perturbations of Schwarzschild
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Consider simplest case: perturbations of Schwarzschild

decompose into Yℓm modes, consider time-domain evolution of h̄ab

⇒ ℓ ≥ 2 evolutions are stable X

(if a suitable constraint-damping scheme is used)
Gundlach et al., CQG 22, 3767 (2005) = gr-qc/0504114

Barack & Lousto, PRD 72, 104026 (2005) = gr-qc/0510019

Dolan & Barack, PRD 87, 084066 (2013) = arXiv:1211.4586
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Consider simplest case: perturbations of Schwarzschild

decompose into Yℓm modes, consider time-domain evolution of h̄ab

⇒ ℓ ≥ 2 evolutions are stable X

(if a suitable constraint-damping scheme is used)
Gundlach et al., CQG 22, 3767 (2005) = gr-qc/0504114

Barack & Lousto, PRD 72, 104026 (2005) = gr-qc/0510019
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But ℓ = 0 (monopole) and ℓ = 1, m = ±1 (dipole) modes are unstable:

Barack & Sago, PRD 81, 084021 (2010) = arXiv:1002.2386

Dolan & Barack, PRD 87, 084066 (2013) = arXiv:1211.4586

Dolan & Barack (2013) found a generalized Lorenz gauge
(set h̄ab

|b = f (hcd , x
e)) which stabilizes the monopole mode X

But they were unable to stabilize the dipole mode
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Growing (dipole) Lorenz gauge mode

The dipole Lorenz gauge mode . . .

• is a pure-gauge solution of the perturbation equations

• satisfies all physical BCs at horizon and spatial infinity at any finite time
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[[movie of homogeneous evolution]]
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Subtracting (orthogonalizing) the homogeneous mode

Observe that our main interest is in sourced evolutions
(either with a point particle or with an effective source). So . . .

• define (choose) an inner product (u1, u2) on state vectors;
this implicitly also defines a norm ‖u‖ =

√

(u, u)

. . . I typically use the standard Euclidean inner product
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• define udiff(t, x
i ) by

udiff := usourced + λuhom

where the (complex) scalar λ ≈ −1 is chosen to minimize ‖udiff‖
[this is equivalent to the orthogonality condition udiff ⊥ uhom];
λ may either be fixed or be updated “occasionally” during the evolution
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(u, u)

. . . I typically use the standard Euclidean inner product

• consider a sourced evolution usourced(t, x
i) with some initial data

• in parallel with this evolution, also simulate a vacuum
(homogeneous) evolution uhom(t, x

i ) with the same initial data

• define udiff(t, x
i ) by

udiff := usourced + λuhom

where the (complex) scalar λ ≈ −1 is chosen to minimize ‖udiff‖
[this is equivalent to the orthogonality condition udiff ⊥ uhom];
λ may either be fixed or be updated “occasionally” during the evolution

⇒ since uhom is a homogeneous solution and (in between updates) λ is just a
fixed complex scalar, udiff is also a solution of the sourced evolution eqns
(the hope is that udiff will not have the growing mode)
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Numerical example
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[[movie of orthogonalized evolution]]
(note greatly expanded vertical scale compared to first movie!)
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• Lorenz gauge is a natural choice for numerical evolution
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