Flatlandiers never forget
Self-interaction in lower dimensions

Abraham Harte
Dublin City University

June 26 2018

Capra 21
Albert Einstein Institute

Work with Peter Taylor and Éanna Flanagan,
based on PRD 97, 124053 (2018)
Enormous progress on the self-force: Theoretical and computational methods, physical understanding, . . .

- Most of this has been (ostensibly) motivated by astrophysics.
Enormous progress on the self-force: Theoretical and computational methods, physical understanding, ...

- Most of this has been (ostensibly) motivated by astrophysics.
- But self-interaction occurs in many areas of physics; we can do more!
Many potential connections to experimentally-accessible systems...

High-powered lasers

- $E \sim 10^{15} \text{ V/m}$ and $P \sim 10^4 \times \text{(global electricity consumption)}!!$
Many potential connections to experimentally-accessible systems...

High-powered lasers

- $E \sim 10^{15} \text{ V/m}$ and $P \sim 10^4 \times (\text{global electricity consumption})!!$
- (self-force) \gg (Lorentz force): Not understood theoretically.
Many potential connections to experimentally-accessible systems...

High-powered lasers
- $E \sim 10^{15} \text{ V/m}$ and $P \sim 10^4 \times$ (global electricity consumption)!!
- (self-force) \gg (Lorentz force): Not understood theoretically.

Electrons around magnetars
- $B \sim 10^{10} \text{ T}$
- Large \dot{a} and (dipole energy) > (rest mass)
- Even center of mass definitions break down!
Many important condensed matter systems are effectively $2+1D$.

Pilot wave hydrodynamics: An example of classical wave-particle duality [Couder, Fort, Bush, ...]
A tabletop $2 + 1D$ self-force experiment

Classical system with single-particle diffraction, tunneling, quantized orbits, Zeeman-type level splitting, and more!

Bush JWM. 2015.
Is self-force similar when $d \neq 4$?

For even $d \geq 4$, yes; Detweiler-Whiting works.

Odd d is qualitatively different:

1. Huygens’ principle strongly violated even in flat spacetime.
2. Tails are *unbounded*.
3. Detweiler-Whiting fails.
In flat 4D spacetime, the retarded Green function is

\[G_{\text{ret}}^{4D} = \delta_{\text{ret}}(\sigma). \]

Perturbations are **sharp** and travel **only** in **null** directions.
In flat 4D spacetime, the retarded Green function is

\[G_{\text{ret}}^{4D} = \delta_{\text{ret}}(\sigma). \]

Perturbations are **sharp** and travel *only* in null directions.

Dropping down one dimension,

\[G_{\text{ret}}^{3D} = \frac{\Theta_{\text{ret}}(-\sigma)}{(-\sigma)^{1/2}} \sim \frac{1}{t - t'}. \]

Perturbations are **not sharp** and travel *only* in timelike directions. Ripples on a pond...
Method of descent [Hadamard, 1923]: Let a line charge flash in and out of existence in $3+1$D and project into a plane.
Persistent memories

\[(d = 3 \text{ flat tail}) \sim t^{-1}, \quad (d = 4 \text{ Schwarzschild tail}) \sim t^{-3}.\]

But \(\int t^{-1} dt \) doesn’t decay!

This *qualitatively* changes the importance of history dependence in self-force (and other) contexts.
Charges scattering (and possibly annihilating) in \mathbb{M}^3 generically produce a late-time force

$$F \sim t^{-1/2}$$

on test particles [Satishchandran & Wald (2018)].

\Rightarrow Velocity memory diverges when $d = 3$.
Isolated scalar charge which is created at $t = 0$ in \mathbb{M}^3:

$$\phi_{\text{ret}} = \int qG_{\text{ret}} d\tau \sim \int_0^t \frac{q_\infty d\tau}{[(t - \tau)^2 - r^2]^{1/2}}.$$

It may be shown that $\hat{\phi} \sim q_\infty \ln t$.

⇒ **Charges “evaporate” logarithmically** [Burko (2002)]:

$$m(t) - m(t') = q_\infty^2 \ln(t'/t).$$
Considerable foundational and calculational developments are needed to go beyond this.

But self-force, self-torque, and extended-body effects now understood non-perturbatively [AIH, Taylor, Flanagan (2018)].

1. arbitrary d,
2. arbitrary g_{ab},
3. all multipole orders.

Focus here on monopole effects in $d = 3$ Minkowski...
With trivial boundary conditions and in a slow-motion limit,

\[F_{\text{self}}^i(t) = -\frac{q^2}{2} \int_{-\infty}^{t} \dot{a}^i(\tau) \ln[(t - \tau)/\ell] d\tau. \]

- Depends on the past history of a particle’s jerk \(\dot{a}^i \).
- Weighting increases without bound in the distant past!!
\(O(qq_{ab}) \) self-torques

Contribution to spin rate of change:

\[
N_{\text{self}}^{ij} = 2q^0[i (F_{\text{self}}^j / q)
\]

Contribution to hidden momentum:

\[
N_{\text{self}}^{0i} = q^i j (F_{\text{self}}^j / q).
\]

Same log-weighted integrals of \(\dot{a^i} \) for forces and torques...

⇒ Solve integral equations, not differential equations.
Peak acceleration occurs before peak of applied force.
This is causal; SF is sensitive to \dot{a}, not a.
Persistent decaying deceleration at late times...
If a charge is initially inertial, is accelerated, and is then allowed to evolve freely, it **tries to return to its initial state**.
At late times, the velocity of kicked charge satisfies

$$v^i(t) = v^i_0 + \frac{\Delta v^i}{1 + (q^2/2m) \ln[(t - t_0)/\ell]}.$$

Velocities asymptotically return to their initial values: $v^i \to v^i_0$

Bodies in $2+1D$ create their own “rest frames,” which are never forgotten.
Electric field due to the object’s initial state acts like a *decaying spring*:

\[E_{\text{init}}^i = -\frac{q x_i^i}{2t^2} + \mathcal{O}(|x|^3/t^4). \]

All solutions to

\[m\ddot{x}^i = qE_{\text{init}}^i \]

vanish at late times.
Conclusions

- Self-interaction in lower dimensions is physically relevant.
- Slow field decay makes the self-force dominant even in simple systems.
- The shadow of a body’s past creates its own rest frame in $2 + 1D$.
Conclusions

- Self-interaction in lower dimensions is physically relevant.
- Slow field decay makes the self-force dominant even in simple systems.
- The shadow of a body’s past creates its own rest frame in $2+1D$.

Future questions

1. Can “quantum-like” behavior arise with nontrivial boundary conditions and/or extra particles? Explore numerically!
2. How can self-force ideas be applied in detail to real physical systems?