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21st Capra: Where are we?

Enormous progress on the self-force: Theoretical and computational
methods, physical understanding, . . .

Most of this has been (ostensibly) motivated by astrophysics.

But self-interaction occurs in many areas of physics; we can do more!
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Many potential connections to experimentally-accessible systems. . .

High-powered lasers

E ∼ 1015V/m and P ∼ 104 × (global electricity consumption)!!

(self-force) � (Lorentz force): Not understood theoretically.

Electrons around magnetars

B ∼ 1010T

Large ȧ and (dipole energy) > (rest mass)

Even center of mass definitions break down!
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Different numbers of dimensions

Many important condensed matter systems are effectively 2 + 1D.

Pilot wave hydrodynamics: An example of classical wave-particle
duality [Couder, Fort, Bush, . . . ]
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A tabletop 2 + 1D self-force experiment

Classical system with single-particle diffraction, tunneling, quantized
orbits, Zeeman-type level splitting, and more!
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Is self-force similar when d 6= 4?

For even d ≥ 4, yes; Detweiler-Whiting works.

Odd d is qualitatively different:

1 Huygens’ principle strongly violated even in flat spacetime.

2 Tails are unbounded.

3 Detweiler-Whiting fails.
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Wave propagation

In flat 4D spacetime, the retarded Green function is

G 4D
ret = δret(σ).

Perturbations are sharp and travel only in null directions.

Dropping down one dimension,

G 3D
ret =

Θret(−σ)

(−σ)1/2
∼ 1

t − t ′
.

Perturbations are not sharp and travel only in timelike directions. Ripples
on a pond. . .
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Where does this come from?

Method of descent [Hadamard, 1923]: Let a line charge flash in and out of
existence in 3 + 1D and project into a plane.
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Persistent memories

(d = 3 flat tail) ∼ t−1, (d = 4 Schwarzschild tail) ∼ t−3.

But

∫
t−1dt doesn’t decay!

This qualitatively changes the importance of history dependence in
self-force (and other) contexts.
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A non self-force example: Memory effects

Charges scattering (and possibly annihilating) in M3

generically produce a late-time force

F ∼ t−1/2

on test particles [Satishchandran & Wald (2018)].

⇒ Velocity memory diverges when d = 3.
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Simplest possible self-force

Isolated scalar charge which is created at t = 0 in M3:

φret =

∫
qGretdτ ∼

∫ t

0

q∞dτ

[(t − τ)2 − r2]1/2
.

It may be shown that φ̂ ∼ q∞ln t.

⇒ Charges “evaporate” logarithmically [Burko (2002)]:

m(t)−m(t ′) = q2∞ ln(t ′/t).
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Generic self-interaction

Considerable foundational and calculational developments are needed to go
beyond this.

But self-force, self-torque, and extended-body effects now understood
non-perturbatively [AIH, Taylor, Flanagan (2018)].

1 arbitrary d ,

2 arbitrary gab,

3 all multipole orders.

Focus here on monopole effects in d = 3 Minkowski. . .
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Electromagnetic self-force in M3

With trivial boundary conditions and in a slow-motion limit,

F i
self(t) = −q2

2

∫ t

−∞
ȧi (τ) ln[(t − τ)/`]dτ.

Depends on the past history of a particle’s jerk ȧi .

Weighting increases without bound in the distant past!!
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O(qqab) self-torques

Contribution to spin rate of change:

N ij
self = 2q0[i (F

j]
self/q)

Contribution to hidden momentum:

N0i
self = qi j(F

j
self/q).

Same log-weighted integrals of ȧi for forces and torques. . .

⇒ Solve integral equations, not differential equations.
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Gaining some intuition: A Gaussian pulse

-2 -1 1 2 3 4
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Peak acceleration occurs before peak of applied force.

This is causal; SF is sensitive to ȧ, not a.

Persistent decaying deceleration at late times. . .
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Generic kicks in 2 + 1D

If a charge is initially inertial, is accelerated, and is then allowed to evolve
freely, it tries to return to its initial state.
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Aristotle strikes back

At late times, the velocity of kicked charge satisfies

v i (t) = v i0 +
∆v i

1 + (q2/2m) ln[(t − t0)/`]
.

Velocities asymptotically return to their initial values: v i → v i0

Bodies in 2 + 1D create their own “rest frames,” which are never forgotten.
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Heuristic explanation

Electric field due to the object’s initial state acts like a decaying spring:

E i
init = −qx i

2t2
+O(|x |3/t4).

All solutions to
mẍ i = qE i

init

vanish at late times.
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Conclusions

Self-interaction in lower dimensions is physically relevant.

Slow field decay makes the self-force dominant even in simple systems.

The shadow of a body’s past creates its own rest frame in 2 + 1D.

Future questions

1 Can “quantum-like” behavior arise with nontrivial boundary
conditions and/or extra particles? Explore numerically!

2 How can self-force ideas be applied in detail to real physical systems?
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