The mathematics of multiscale expansions and the trajectory towards sub-radian accurate waveforms

J. Moxon1 E. Flanagan1 T. Hinderer3 A. Pound2

1Cornell University
Department of Physics

2University of Southampton
Mathematical Sciences

3University of Maryland, College Park
Maryland Center for Fundamental Physics

Capra 2018
Main problem for getting post-adiabatic waveforms is bringing down the phase error

\[\phi = \frac{1}{\epsilon} \left[\phi^{(0)} + \sqrt{\epsilon} \phi^{(1/2)} + \epsilon \phi^{(1)} + \ldots \right] \]

resonances to be covered in future work

\(\phi^{(0)} \): adiabatic order is comparatively easy, just need dissipative first order self-force

\(\phi^{(1)} \): post-adiabatic order is delicate; scaling arguments suggest that we will require:
- Dissipative part of second-order self force
- Conservative first-order self force effects
- Slow deviation from geodesic motion (beyond osculating geodesics - maybe small see Peter Diener’s talk)
- Slow accretion of central mass and spin (\(\mathcal{O}(\mu) \) over full inspiral)

An osculating geodesics approach would neglect the true history and the evolution of spacetime (Note: not yet formulated at second order)
Main problem for getting post-adiabatic waveforms is bringing down the phase error

\[\phi = \frac{1}{\epsilon} \left[\phi^{(0)} + \sqrt{\epsilon} \phi^{(1/2)} + \epsilon \phi^{(1)} + \ldots \right] \]

Resonances to be covered in future work

\(\phi^{(0)} \): adiabatic order is comparatively easy, just need dissipative first order self-force

\(\phi^{(1)} \): post-adiabatic order is delicate; scaling arguments suggest that we will require:

- Dissipative part of second-order self force
- Conservative first-order self force effects
- Slow deviation from geodesic motion (beyond osculating geodesics - maybe small see Peter Diener’s talk)
- Slow accretion of central mass and spin (\(O(\mu) \) over full inspiral)

Self-consistent includes full slow evolution of worldline, but (without modification) does not accurately track slow evolution of the spacetime
Main problem for getting post-adiabatic waveforms is bringing down the phase error

\[\phi = \frac{1}{\epsilon} [\phi^{(0)} + \sqrt{\epsilon} \phi^{(1/2)} + \epsilon \phi^{(1)} + \ldots] \]

resonances to be covered in future work

\(\phi^{(0)} \): adiabatic order is comparatively easy, just need dissipative first order self-force

\(\phi^{(1)} \): post-adiabatic order is delicate; scaling arguments suggest that we will require:

- Dissipative part of second-order self force
- Conservative first-order self force effects
- Slow deviation from geodesic motion (beyond osculating geodesics - maybe small see Peter Diener’s talk)
- Slow accretion of central mass and spin (\(\mathcal{O}(\mu) \) over full inspiral)

Currently, multiscale method is the best suggested technique to directly compute all required effects
Prior work applying multiscale to EMRIs

- Mino and Price (2008)
 - A proof-of-concept computation of flat space Klein-Gordon scalar radiation-reaction for a quasicircular case, through post-adiabatic order

- Hinderer and Flanagan (2008)
 - First major step in computing the multiscale dynamics; presented the equations for the orbit itself assuming field solution input

- Pound (2015)
 - Returned to quasicircular scalar case, now with a quadratic source chosen to emulate gravitational nonlinearity
 - Uncovered and resolved a critical problem at large scales: an infrared divergence arises from periodicity construction
Zones and scales of approximation methods

- Mathematical preliminaries
- Multiscale methods for EMRIs
- **Near small object**: \(\bar{r} \ll M \)
Puncture [Pound, Miller], multiscale worldline
- **Interaction zone**: \(|r_*| \ll M/\epsilon \)
Multiscale wave equation
- **Far zone**: \(r_* \gg M \)
Geometric optics, with some Post-Minkowski techniques; Extending [Pound 2015]
- **Near-Horizon**: \(r_* \ll M \)
Black hole perturbation theory [Isoyama, Pound, Tanaka, Yamada]
- (future work) Resonances
Zones and scales of approximation methods

- **Mathematical preliminaries**
- **Multiscale methods for EMRIs**
- **Near small object**: \(\bar{r} \ll M \)
 Puncture [Pound, Miller], multiscale worldline
- **Interaction zone**: \(|r_*| \ll M/\epsilon \)
 Multiscale wave equation
- **Far zone**: \(r_* \gg M \)
 Geometric optics, with some Post-Minkowski techniques;
 Extending [Pound 2015]
- **Near-Horizon**: \(r_* \ll -M \)
 Black hole perturbation theory
 [Isoyama, Pound, Tanaka, Yamada]
- **(future work) Resonances**
EMRIs as a weakly nonlinear oscillator

- A two-companion system with $\mu/M \equiv \epsilon \ll 1$

- The general problem:
 - An (instantaneously) nearly geodesic worldline, source scale $\sim \mu$
 - Generates weak metric perturbations $\sim \epsilon$
 - Weak metric perturbations satisfy a weakly nonlinear wave equation, from suppression of quadratic sources

- The motion is non-conservative
 - Gravitational radiation carries energy, angular momentum, and Carter to I^+, H^+

- Large separation of timescales $T_{\text{orbit}} \ll T_{\text{RR}}$
The general problem we wish to solve:

\[D[f(t)] + \epsilon Q[f(t)] = 0, \]

with well-understood oscillator differential operator \(D \) and nonlinear operator \(Q \).

A naive approximation takes,

\[f(t) \approx f^{(0)}(t) + \epsilon f^{(1)}(t) + \ldots, \]

where

\[D[f^{(0)}(t)] = 0 \]

However, typically \(D \) is conservative, while \(\epsilon Q \) introduces dissipation, so at late times,

\[\epsilon f^{(1)} \sim f^{(0)} \]
Dissipation from weak nonlinearity is slow compared to oscillations,
\[T_{\text{diss}} \sim \epsilon T_{\text{osc}} \]

General procedure:
- Introduce a pair of time variables \(\{ \varphi, \tilde{t} \} \), strictly periodic \(\varphi, \tilde{t} = \epsilon t \)
- Promote all physical variables \(f(t) \rightarrow f'(\varphi, \tilde{t}) \)
- Promote all differential operators \(D \rightarrow D' = D|_{\partial_t \rightarrow \Omega(\tilde{t}) \partial_\varphi + \epsilon \partial_{\tilde{t}}} \)
- Solve differential equations order-by-order for \(f^{(n)}(\varphi, \tilde{t}) \) and \(\Omega^{(n)}(\tilde{t}) \)

Projection to physical solution \(f(t) \) via,
\[
\tilde{t} = \epsilon t \quad \frac{d}{dt} \varphi = \Omega(\tilde{t})
\]
Physical time extracts full decay, depends on both slow and fast times.

Fast-time slice at $\tilde{t} = 3$

Fast-time slice at $\tilde{t} = 2$

Fast-time slice at $\tilde{t} = 1$

Fixed fast time, varying slow time

Fixed slow time, varying fast time

Values in full twotime space

Post-adiabatic multiscale Cornell University
Zones and scales of approximation methods

- Mathematical preliminaries
- Multiscale methods for EMRI
- Near small object: \(\bar{r} \ll M \)
Puncture [Pound, Miller], multiscale worldline
- Interaction zone: \(|r_*| \ll M/\epsilon \)
 Multiscale wave equation
- Far zone: \(r_* \gg M \)
 Geometric optics, with some Post-Minkowski techniques; Extending [Pound 2015]
- Near-Horizon: \(r_* \ll -M \)
 Black hole perturbation theory [Isoyama, Pound, Tanaka, Yamada]
- (future work) Resonances
Multiscale approximation construction

- Multiscale approximation promotes time dependence to multiple (3 fast, 1 slow) variables $t \rightarrow \{\tilde{w}, q^A\}$,

$$w = t + \alpha(r)$$

$$\tilde{w} = \frac{\mu}{M} w \equiv \epsilon w$$

$$\frac{d\varphi^A}{dw} = \Omega^A(\tilde{w}, \epsilon)$$

- Action angle variables $\varphi^A = q^A + \mathcal{O}(\epsilon^2)$ used from celestial mechanics solutions

- Metric and worldline ansatz:

$$g_{\alpha\beta} = g_{\alpha\beta}^{(0)}(x^i) + \epsilon h_{\alpha\beta}^{(1)}(\tilde{w}, q^A, x^i) + \epsilon^2 h_{\alpha\beta}^{(2)}(\tilde{w}, q^A, x^i) + \mathcal{O}(\epsilon^3)$$

$$z^\mu = z^{(0)}(\tilde{w}, q^A) + \epsilon z^{(1)}(\tilde{w}, q^A) + \mathcal{O}(\epsilon^2)$$

- Incorporating slow-time evolution (\tilde{w}) into the leading solutions preserves quality of approximation for the entire inspiral $\sim M^2/\mu$, and incorporates radiation-reaction worldline into subleading source
Problems at long distances: rapid slow time transmission

- For each slow time, we find the appropriate fast-time solution
 \[h^{(n)}(x^i, \tilde{w}, q^A) \]

- True evolution assembled from a path through the 4-dimensional \(\{\tilde{w}, q^A\} \)

- Quasi-conserved quantities \(\{E^{(0)}(\tilde{w}), L_z^{(0)}(\tilde{w}), Q^{(0)}(\tilde{w})\} \) are constant over a surface of constant \(\tilde{w} \)
 - For spacelike constant \(\tilde{w} \) surfaces, transmission of information to distances of \(\sim M/\epsilon \) in times of \(\sim M \) unphysical

Steady frequency on spacelike surfaces of constant \(\tilde{t} \) unphysical
For each slow time, we find the appropriate fast-time solution \(h^{(n)}(x^i, \tilde{w}, q^A) \).

True evolution assembled from a path through the 4-dimensional \(\{\tilde{w}, q^A\} \).

Quasi-conserved quantities \(\{E^{(0)}(\tilde{w}), L_z^{(0)}(\tilde{w}), Q^{(0)}(\tilde{w})\} \) are constant over a surface of constant \(\tilde{w} \):

- For spacelike constant \(\tilde{w} \) surfaces, transmission of information to distances of \(\sim M/\epsilon \) in times of \(\sim M \) unphysical.

Solution: enforce surfaces of constant \(\tilde{w} \) are asymptotically null:

- Transmission to near-retarded time at \(I^+ \) and near-advanced time at \(H^+ \) acceptable, approximation convergence restored.
Breakdown at long distances: extended source

- At large scales of integration domain, another more subtle problem causes a failure of convergence [Pound 2015]

- Multiscale assumes radiation timescale longer than all other time scales

- At each order we solve a wave equation of the form

\[\Box q^A h_{\mu\nu} = S(x^i, q^A, \tilde{w}), \]

for some source \(S \).

- At long scales, inverting \(\Box q^A \) assumes an eternal source (in \(q^A \)), so fills space with radiation

- Leading second-order source scales as \(\sim \Omega^2 / r^2 \)
 - Leads to a divergent second order solution if taken over full spatial domain
 - Divergence arises even with asymptotically null time variable [Pound 2015]

- A separate approximation is needed for \(|r^*| \gg M \)
Zones and scales of approximation methods

- Mathematical preliminaries
- Multiscale methods for EMRIs
- Near small object: $\bar{r} \ll M$
 Puncture [Pound, Miller], multiscale worldline
- Interaction zone: $|r_*| \ll M/\epsilon$
 Multiscale wave equation
- Far zone: $r_* \gg M$
 Geometric optics, with some Post-Minkowski techniques;
 Extending [Pound 2015]
- Near-Horizon: $r_* \ll -M$
 Black hole perturbation theory
 [Isoyama, Pound, Tanaka, Yamada]
- (future work) Resonances
- Perform an action-angle variable decomposition for each fixed \(\tilde{w} \), including source terms determined by slow time derivatives

- Forcing terms are determined form self-acceleration as

\[
\begin{align*}
g^A &= \frac{\partial q^A}{\partial p^\mu} a^\mu \\
F^M_{\mu} &= \frac{\partial J^M}{\partial P^N} \frac{\partial P^N}{\partial p^\mu} a^\mu,
\end{align*}
\]

- Finally, action-angle variables obey the multiscale equations:

\[
\begin{align*}
\frac{dq^A}{dw} &= \Omega^A = \omega^A [P^{(0)M}(\tilde{w}) + \epsilon P^{(1)M}(\tilde{w}, q^A) + \ldots] \\
&\quad + \epsilon g^{(1)A}(q^A, P^M) + \epsilon^2 g^{(2)A}(q^A, P^M) + O(\epsilon^3) \\
\frac{dJ^M}{dw} &= \epsilon G^{(1)M}(q^A, P^M) + \epsilon^2 G^{(2)M}(q^A, P^M) + O(\epsilon^3)
\end{align*}
\]
Near-identity transformations

▶ The idea: perform a small alteration to the action-angle \(\{q^A, J^M\} \) to simplify the equations of motion

▶ Recently shown to have significant practical importance for rapid computations [Van de Meent, Warburton 2018] See Niels’ talk next

▶ Can be used to entirely eliminate [Flanagan, Vines] the angle-variable dependence of self force terms,

\[
J'^M = J^M + \epsilon \frac{i \tilde{G}^M_{kA}}{k^A \omega_A} \\
q'^A = q^A + \epsilon \frac{i}{k^A \omega_A} \left(\tilde{g}^A_{kA} - \frac{\partial \omega^A}{\partial J^M} T^M_{kA} \right)
\]

▶ Resulting equations of motion have only zero-frequency forcing terms,

\[
\frac{\partial q'^A}{\partial w} = \omega^A (P^M) + \epsilon g^{(1)A} (J'^M) + \epsilon^2 g^{(2)A} (J'^M) \\
\frac{\partial J'^M}{\partial w} = \epsilon G^{(1)} (J'^M) + \epsilon^2 G^{(2)} (J'^M)
\]
Puncture correction from subleading worldline

- Require the puncture metric $h^{P}_{\alpha\beta}$ through second order
- Formulated in [Pound, Miller] in terms of distance to exact worldline $h^{P}(z)$
- Instead, for two timescale, worldline is perturbatively expanded

 $z^{\mu} = z^{(0)\mu}(q^{A}, \tilde{w}) + \epsilon z^{(1)\mu}(q^{A}, \tilde{w}) + \mathcal{O}(\epsilon^{2})$

- Gives an $\mathcal{O}(\mu)$ displacement from fiducial worldline \Rightarrow dipole correction
- Expansion of covariant puncture accomplished via techniques presented in [Pound 2015], adjusted to coordinate multiscale time derivatives

ΔZ of center of mass \Rightarrow dipole
Mapping back to worldline expansion

- Corrections to puncture require an explicit form of \(z^{(1)}(q'^A, J'^M) \) not explicitly given in action-angle equations of motion

- To obtain this inversion, we perturbatively expand

\[
\frac{dz^i}{dw} = \frac{p_\beta g^{i\beta}}{p_\beta g^{w\beta}}
\]

- Requires information from leading and subleading frequencies \(\Omega^{(0)}, \Omega^{(1)} \)
 - Subleading frequencies include self-force contributions \(\langle g^A \rangle \)
 - Action variable frequencies \(\partial H / \partial J^A \equiv \omega^A \) determined by inverting

\[
\frac{\partial J^\alpha}{\partial P^\gamma} \frac{\partial P^\gamma}{\partial J_\alpha} = \delta^{\gamma}_{\beta}
\]

- Oscillatory dependence of self forces \(g^A \) and \(G^M \) must be restored in order to obtain full fast-time orbits - all \(p^{(1)}, \Omega^{(1)} \) depend explicitly on both \(J'^M, q'^A, g^A, G^M \) directly
Zones and scales of approximation methods

- Mathematical preliminaries
- Multiscale methods for EMRI
- Near small object: $\bar{r} \ll M$
 Puncture [Pound, Miller], multiscale worldline
- Interaction zone: $|r_*| \ll M/\epsilon$
 Multiscale wave equation
- Far zone: $r_* \gg M$
 Geometric optics, with some Post-Minkowski techniques;
 Extending [Pound 2015]
- Near-Horizon: $r_* \ll -M$
 Black hole perturbation theory
 [Isoyama, Pound, Tanaka, Yamada]
- (future work) Resonances
Two timescale wave equations for Lorenz gauge

- Practical computations using explicit EFE will likely be performed in Lorenz gauge, promoted to multiscale

\[\nabla^{(0)}_\mu h^{(1)\mu\nu} = 0 \]
\[\nabla^{(1)}_\mu h^{(1)\mu\nu} + \nabla^{(0)}_\mu h^{(2)\mu\nu} = 0 \]

- Imposition of Lorenz gauge gives multiscale relaxed EFE expansion

\[\delta E^{(0)}_{\mu\nu} [h^R^{(1)}] = - \delta E^{(0)}_{\mu\nu} [h^P^{(1)}] + 8\pi \bar{T}_{\mu\nu} \equiv S^{R_{\text{eff}}^{(1)}}_{\mu\nu} \]
\[\delta E^{(0)}_{\mu\nu} [h^R^{(2)}] = - \delta E^{(0)}_{\mu\nu} [h^P^{(2)}] - \delta^2 E^{(0)}_{\mu\nu} [h^{(1)}, h^{(1)}] - \delta E^{(1)}_{\mu\nu} [h^{(1)}] \equiv S^{R_{\text{eff}}^{(2)}}_{\mu\nu} \]

- Effective source formalism - recall talks by Peter Diener, Seth Hopper
- Puncture metric determined by z^μ expansion, discussed earlier
- Corrections to geodesic motion incorporated via $E^{(1)}$ terms
Teukolsky-Lousto-Campanelli overview

- Teukolsky-Lousto-Campanelli formalism offers a way of computing Weyl scalars $\psi_{0/4}^{(1)}$, $\psi_{0/4}^{(2)}$ without first finding the respective metric perturbations.

- first order:

 \[
 W_{+2}^{(0)} [\psi_{0}^{(1)}] = 4\pi \Sigma T_{+2} \\
 W_{-2}^{(0)} [\rho^{-4} \psi_{4}^{(1)}] = 4\pi \Sigma T_{-2}
 \]

- second order:

 \[
 W_{+2}^{(0)} [\psi_{0}^{(2)}] = S_{+2} [h^{(1)}] - W_{+2}^{(1)} [\psi_{0}^{(1)}] \\
 W_{-2}^{(0)} [\rho^{-4} \psi_{4}^{(2)}] = S_{-2} [h^{(1)}] - W_{-2}^{(1)} [\rho^{-4} \psi_{4}^{(1)}]
 \]

- Second-order source depends on all components of $h^{(1)}$ - must be reconstructed

- TLC equations do not explicitly restrict $\ell < 2$, static completion must be inferred [Merlin et. al.]

 - Slow variation can be computed from reconstructed $h^{(1)}$
A sketch of the implementation details, not yet thoroughly developed:

- Need to reconstruct $h^{(1)}$, so prefer leading TLC to be on the physical pointlike source, rather than effective source
 - Sharp feature at all ℓ, at radius of source, require EHS [Barack, Ori, Sago] and transition condition from source recall from talks by Maarten, Zachary
 - Static completion part obtained by [Merlin et. al.]

- Expect second-order equations to become ill-defined without regularization, so effective source must be used

- At second order, an extended inhomogeneous source as well as a sharp feature at the radius of the orbit
 - Use extended particular solutions [Hopper, Evans]: separately get regular solution by integrating separation of vars from outside and from inside, transition at sharp feature
Slow variations for spacetime

- General scaling: $O(\epsilon^2)$ flux, \mathcal{M}/ϵ time
 - $O(\epsilon \mathcal{M})$ alteration in spacetime moments over time

- leading order must include $\delta \mathcal{M}, \delta a$
 \[
 h^{(1)}_{\alpha\beta} = \delta \mathcal{M}(\tilde{w}) \frac{\partial g_{\alpha\beta}}{\partial \mathcal{M}} + \delta(\mathcal{M}a)(\tilde{w}) \frac{\partial g_{\alpha\beta}}{\partial (\mathcal{M}a)} + \mathcal{F}_{\alpha\beta}(\mathcal{P}^M, q^A)
 \]

- What about other secular parts, like spin orientation, overall boost, or more subtle ‘charges’ from BMS:
 - Each of these introduce a slow-time dependent $\delta h^{(1)}_{\alpha\beta}(\tilde{w})$, but each can (at fixed \tilde{w}) be removed with a gauge transformation

 \Rightarrow up to gauge, all of these effects give rise to a non-removable $\delta h^{(2)}_{\alpha\beta}(\tilde{w})$, but that’s post-2-adiabatic.
Determining δM, δa in Lorenz gauge

- Consider the additional quasistatic part of the metric perturbation separately, permit a different gauge:

$$h^{(1)} = \frac{\partial g^{(0)}}{\partial M} \delta M(\tilde{w}) + \frac{\partial g^{(0)}}{\partial (aM)} \delta(aM)(\tilde{w}) + \mathcal{F}^{(1)}(x^i, P^M, q^A)$$

- $E_{\mu\nu}$ annihilates the $\partial g^{(0)}$ parts of variation

- In the multiscale Lorenz gauge, the gauge condition becomes dynamical

$$\nabla^{(1)}_{\mu} h R^{(1)\mu\nu} + \nabla^{(0)}_{\mu} h R^{(2)\mu\nu} = 0$$

- In a general sense, this condition is the constraint which preserves stress-energy conservation on the long scale of the inspiral
Instead of the Lorenz gauge giving conservation information, more generally we need to consult the EFE itself.

The quasistatic $\ell = 0$ part of the EFE determines the slowly varying parts
\[
\int d^3 q d^2 \Omega R_{tr}^{(1)} [h^{(1)}] = \alpha(r) \partial_{\tilde{u}} \delta M + \beta(r) \partial_{\tilde{u}} \delta a(\tilde{u})
\]
\[
\int d^3 q d^2 \Omega R_{\phi r}^{(1)} [h^{(1)}] = \gamma(r) \partial_{\tilde{u}} \delta M + \beta(r) \partial_{\tilde{u}} \delta a(\tilde{u})
\]

These can then be inverted with the EFE to obtain formulas in terms of the second-order Ricci $R[h^{(1)}, h^{(1)}]$.

Note that these derivations intuitively require metric reconstruction to determine quadratic ‘fluxes’.
Fluxes for orbital dynamics: overview

- First order version initially developed by [Gal'tsov; Sago, Fujita; Ganz et. al.]

- At first order, the balance law relations imply give an equality of conserved quantities at the orbit and asymptotic fluxes

\[
\left\langle \frac{d\mathcal{E}^{(0)}}{d\tilde{\tau}} \right\rangle = \left\langle u^\alpha u^\beta \mathcal{L}_\xi h^{(1)}_{\alpha\beta} \right\rangle
\]

\[
\Rightarrow \left\langle \frac{dE}{d\tilde{\tau}} \right\rangle = \sum i\omega \left(\alpha \left(Z^{(1)}_{\text{out}} \right)^2 + \beta \left(Z^{(1)}_{\text{down}} \right)^2 \right)
\]

\[
\left\langle \frac{dL_z}{d\tilde{\tau}} \right\rangle = \sum im \left(\alpha \left(Z^{(1)}_{\text{out}} \right)^2 + \beta \left(Z^{(1)}_{\text{down}} \right)^2 \right)
\]

- A similar identity holds for Carter constant evolution [Mino et. al.]

- At second order, we should anticipate a similar description, but with corrections

 - “Schott” terms from trapped energy in the system

"trapped" energy and angular momentum gives rise to Schott terms
Using the quadratic contribution to second-order self-force [Pound], we derive the second order form of flux balance:

\[
\left\langle \frac{d\mathcal{E}^{(1)}}{d\tilde{\tau}} \right\rangle = \frac{1}{2} \left\langle u^\alpha u^\beta \mathcal{L}_\xi h^{(2)}_{\alpha\beta} \right\rangle + \frac{1}{8} \left\langle u^\alpha u^\beta u^\gamma u^\delta \mathcal{L}_\xi \left(h^{(1)\mathcal{R}}_{\alpha\beta} h^{(1)\mathcal{R}}_{\gamma\delta} \right) \right\rangle \\
- \partial_{\tilde{\tau}} \left\langle \xi^\beta u^\gamma h^{(1)\mathcal{R}}_{\beta\gamma} \right\rangle - \frac{1}{2} \partial_{\tilde{\tau}} \left\langle \mathcal{E} u^\alpha u^\beta h^{(1)\mathcal{R}}_{\alpha\beta} \right\rangle
\]

This is gauge invariant as per full gauge transformation from [Pound '15].

We are currently developing a version for Carter constant as well.

Additional manipulation expresses this as a sum of contributions:

- Direct quadratic fluxes from \(h^{(2)\mathcal{R}} h^{(1)\mathcal{R}} \) products
- Corrections associated deviations from homogeneity of \(h^{(1)\mathcal{R}} \)
- Integrals over instantaneous in \(\tilde{w} \) worldline of
 - Quadratic terms in \(h^{(1)} \)
 - Terms with \(h^{(1)} \) multiplied by gauge vector to Rad. gauge \(\zeta \)
 - Terms \(\sim \partial_{\tilde{w}} h^{(1)} \)
 - Terms \(\sim \partial_{\tilde{w}} \zeta \)
Computational cost?

- A great deal of information can be ‘cached’ by analogy to the osculating geodesics formalism
 - First order solution is a rigorously correct interpolation across instantaneously geodesic solutions
 - The interpolation requires highly accurate frequencies $\Omega(\tilde{w})$, which require second-order solutions
- Second order is a combination of a part sourced also by instantaneously-geodesic contributions and a part which involves explicit time derivatives
- Parameter space: $\{\epsilon, a, \delta M, \delta a, E^{(0)}, E^{(1)}, L_z^{(0)}, L_z^{(1)}, Q^{(0)}, Q^{(1)}\}$
 - Perhaps this seems a bit daunting?
 - Note that the internal spacing in each dimension of leading and subleading parameters does not have to be as small as if we used $E = E^{(0)} + E^{(1)}$, for which we would need spacings $\ll \epsilon \mu$
 - Something I’d be interested in hearing discussion and objections from those that might consider implementations of multiscale
Zones and scales of approximation methods

- Mathematical preliminaries
- Multiscale methods for EMRIs
- Near small object: $\bar{r} \ll M$
 Puncture [Pound, Miller], multiscale worldline
- Interaction zone: $|r_*| \ll M/\epsilon$
 Multiscale wave equation
- Far zone: $r_* \gg M$
 Geometric optics, with some Post-Minkowski techniques;
 Extending [Pound 2015]
- Near-Horizon: $r_* \ll -M$
 Black hole perturbation theory
 [Isoyama, Pound, Tanaka, Yamada]
- (future work) Resonances
Geometric optics for the far zone

- Spatial scales vary with $\tilde{x}^i \sim \epsilon x^i$, on scale with slow inspiral

- Construct ansatz with single fast variation parameterized by scalar function $\Theta(x^\nu) / \epsilon$

$$g_{\mu\nu}(x^\nu, \epsilon) = \epsilon^{-2} \left(\eta_{\mu\nu} + \epsilon h_{\mu\nu} [\tilde{x}^\nu] + \epsilon^2 j_{\mu\nu} \left[\tilde{x}^\nu, \frac{\Theta}{\epsilon} \right]
+ \epsilon^3 k_{\mu\nu} \left[\tilde{x}^\nu, \frac{\Theta}{\epsilon} \right] + \mathcal{O}(\epsilon^4) \right)$$

- The rescaling of the coordinates grants an additional order to the weak waves, as they depend on $1/r = \epsilon / \tilde{r}$

- At leading order, the wave equation for this expansion gives simple $1/\tilde{r}$ radiation dependence

$$\frac{1}{\tilde{r}} \partial_{\tilde{r}} j_{AB} + \partial_{\tilde{r}} \partial_{\tilde{r}} j_{AB} = 0$$

- Subleading Lorenz gauge condition constrains additional components of j

- The geometric optics EFE at subleading order fixes the nonvanishing non-TT parts of oscillatory $k_{\mu\nu}$
Third order equations - quasistatic j_0

- Impose Lorenz gauge on the quasistatic part j_0

- Background correction + General wave equation

$$\square j_0^{\mu\nu}[\tilde{x}^\nu] + R_\mu^{\quad \nu^\rho} j_0^{\sigma\rho} = - \left\langle G^{(2,2)}_{\mu\nu}[j, j] \right\rangle$$

- Solvable via techniques first introduced by [Blanchet and Damour]

- Particular retarded solution written as integral:

$$j_0 = \text{FP}_{B \to 0} \left[\frac{1}{K(B)} \int_\infty^{\tilde{r}} \tilde{z} \frac{S^{(k)}(\tilde{t} - \tilde{z})}{\tilde{r}^k} \frac{\partial L}{\partial \tilde{z}} \left(\frac{(\tilde{z} - \tilde{r})^{B-k+l+2}}{\tilde{t}} - \frac{(\tilde{z} + \tilde{r})^{B-k+l+2}}{\tilde{r}} \right) \right]$$

- With some manipulation, we can re-write the retarded solution as a further split of homogeneous + particular solution

$$j_{0,\ell} = \tilde{\partial}_L \frac{j_\ell^G(u)}{\tilde{r}} + j_\ell^H(u)$$

- Quasistatic j match inward to the interaction zone to inform quasistatic mode boundary conditions
Evaluate integral assuming large \tilde{r}. Geometric optics construction gives $G^{(2,2)} \sim \tilde{r}^{-2}$

$$j^H_\ell = \frac{\hat{n}_L}{\tilde{r}} \int_0^\infty d\tilde{z} \left(\frac{1}{2} \ln \frac{\tilde{z}}{2\tilde{r}} + \sum_{n=1}^{\ell} \frac{1}{n} \right) \left\langle G^{(2,2)}[j, j] \right\rangle + \mathcal{O}(\tilde{r}^{-2} \ln(\tilde{r}))$$

$$\tilde{\partial}_L j^G_\ell(\tilde{u}) = \tilde{\partial}_L \frac{1}{\tilde{r}K_k} \int_{-\infty}^{\tilde{u}} d\tilde{s} \left\langle G^{(2,2)} \right\rangle (\tilde{s})(\tilde{u} - \tilde{s})^{\ell}$$

Scales similarly with ε to outgoing waves - ‘memory’-like effect

Scaled coordinates \tilde{x} explicitly incorporate the long scale dependence of the system

Region of nonlinear source $r \sim M/\varepsilon \Rightarrow \tilde{r} \sim M$
Zones and scales of approximation methods

- Mathematical preliminaries
- Multiscale methods for EMRIs
- Near small object: $\bar{r} \ll M$
 - Puncture [Pound, Miller], multiscale worldline
- Interaction zone: $|r_*| \ll M/\epsilon$
 - Multiscale wave equation
- Far zone: $r_* \gg M$
 - Geometric optics, with some Post-Minkowski techniques;
 Extending [Pound 2015]
- Near-Horizon: $r_* \ll -M$
 - Black hole perturbation theory
 [Isoyama, Pound, Tanaka, Yamada]
- (future work) Resonances
A resonant orbit is one in which two characteristic frequencies (e.g. Ω^r and Ω^θ) are related by a rational value.

In the multiscale formalism, resonances cause orbit-averages to develop $O(1)$ corrections.

Scaling arguments indicate that the duration of the resonant alteration should be $\sim M/\sqrt{\epsilon}$.

Over the course of the resonance, the orbit obtains a phase correction $\sim 1/\sqrt{\epsilon}$ and a geodesic parameter P^M correction of $\sim \sqrt{\epsilon} \mu$ [Flanagan, Hinderer 2010].

Significant phase errors will result from ignoring a resonance should it be present.
Resonances: We really can’t avoid them

- Low-order resonances occur frequently in the geodesic parameter space, particularly dense near the ISCO [Brink, Geyer, Hinderer 2015]

- As shown by a study by [Ruangsri, Hughes 2014]
 - low-order resonances are ubiquitous in parameter space
 - The 3:1 resonance, very close to the ISCO occurred for all cases examined

- Order of resonance enters scale of effect as $\Delta \varphi \sim 1/\sqrt{(n + m)\epsilon}$
 - We may need to track resonances to order $|n| + |m| \sim \log(\epsilon)$ [From general scaling arguments from Arnold et. al.]
The ideas of what we can do

- Multiscale is not invalidated in the case of a resonance, just in need of correction

- Before and after the resonance, the standard non-resonant strategy holds, but needs $\sqrt{\epsilon}$ scale terms

 \[P^M = P^{(0)M} + \sqrt{\epsilon}P^{(1/2)M} + \epsilon P^{(1)M} + O(\epsilon^{3/2}) \]

 \[q^A = \frac{1}{\epsilon} \left(q^{(0)A} + \sqrt{\epsilon}q^{(1/2)A} + \epsilon q^{(1)A} + O(\epsilon^{3/2}) \right) \]

- We will also need the 'jumps' across the resonances in the phase and geodesic parameters [see computation by Van de Meent 2014]

- In general, during the transient resonance, a third time scale emerges $\hat{t} \sim \sqrt{\epsilon}t$, and the dynamics can be computed using a multiscale expansion
We now have a nearly complete, comprehensive framework for multiscale approximations. The description of the interaction zone and far zone are now well-understood. We are currently working steadily towards publication of a complete (hopefully implementation-friendly) description. Several methods work in concert to form a globally valid approximation scheme. Multiscale approximations are the only current technique which hold the promise to capture all post-adiabatic effects consistently. Future work for multiscale: resonances: generally introduce powers $\epsilon^{1/2}$