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The problem.

We wish to determine the self-forced motion and field (e.g. energy and angular
momentum fluxes) of a particle with scalar charge

�ψret = −4πq

∫
δ(4)(x− z(τ)) dτ.

Two general approaches:

I Compute enough “geodesic”-based self-forces and then use these to drive the
motion of the particle. (Post-processing, fast, accurate self-forces, relies on slow
orbit evolution)

I Compute the “true” self-force while simultaneously driving the motion.
(Potentially slow and expensive, potentially less accurate self-forces)



Effective source approach.

... is a general approach to self-force and self-consistent orbital evolution that doesn’t
use any delta functions.

Key ideas

I Compute a regular field, ψR, such that the self-force is

Fα = ∇αψR|x=z,

where ψR = ψret − ψS, and the Detweiler-Whiting singular field ψS can be approximated
via local expansions: ψS = ψ̃S(x|z, u, a) +O(εn).

I The effective source, S, for the field equation for ψR is regular at the particle location

�ψR = �ψret −�ψ̃S = S(x|z, u, a, ȧ, ä),

where �ψ̃S = −4πq
∫
δ(4)(x− z(τ)) dτ − S.



Self-consistent vs. geodesic evolutions.

I One main goal is to compare our self-consistent evolutions with Niels Warburton’s
geodesic evolutions.

I First attempt: 3+1D multi-patch finite difference code with a C0 effective source.
I 3+1D accuracy limited by the non-smoothness of the source leading to high

frequency noise with 2nd order convergent amplitude.
I Self-consistent evolutions agreed beautifully with geodesic evolutions within the

errors (dominated by the noise).
I Next attempt: Improve the effective source smoothness to C2.
I Geodesic evolution agreed with the C0 evolutions and the frequency domain result

with the noise reduced by more than an order of magnitude.
I However, we found differences between C2 and C0 results as soon as the

back-reaction was turned on.
I 1+1D discontinuous Galerkin code without acceleration terms lost mode sum

convergence when back-reaction was turned on.
I Now: 1+1D discontinuous Galerkin code with acceleration terms in the effective

source.



The code.

I Solves the spherical harmonic decomposed scalar wave equation in a
Schwarzschild spacetime with a scalar effective source.

I Uses the Discontinuous Galerkin method for spatial discretization.
I Uses the method of lines approach and supports a number of time integrators.
I Uses a world-tube approach.
I Uses hyperboloidal slices, placing the computational domain boundaries at the

horizon and I +.
I Uses a time dependent coordinate transformation to place the particle at a fixed

coordinate location.
I The effective source include acceleration terms.
I Can read in frequency domain code initial data for small ` modes.
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The state of self-consistent evolution at last Capra.

p = 9.9, e = 0.1, q = 1/8. Only four-acceleration passed in to the effective source!!!!

1.0e-08

1.0e-07

1.0e-06

1.0e-05

1.0e-04

1.0e-03

 0  1000  2000  3000  4000  5000  6000  7000  8000

F
r

T/M

l=0

l=4

l=8

l=12

l=16

l=20



What was wrong?

I Noticed that a bit of noise appeared in the extracted self-force shortly after each
periapsis passage.

I Noticed that the same thing happened after each apapsis passage.

I Turns out it was caused by the calculation of ur.

ur = ±

√
E2 −

(
1− 2M

r

)(
1 +

L2
z

r2

)
,

E2 =
(p− 2− 2e)(p− 2 + 2e)

p(p− 3− e2)
and L2

z =
p2M2

p− 3− e2

I Instead of ur ≈ 10−16 we got ur ≈ 10−8 just before and after peri- and apapsis.

I This apparently generates enough noise to trigger a feedback instability when the
back-reaction is applied.

I Easy fix: do this calculation in quad precision.



The state of self-consistent evolution now.

p = 9.9, e = 0.1, q = 1/8. Still only four-acceleration passed in to the effective source.
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The state of self-consistent evolution now.

p = 9.9, e = 0.1.
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The state of self-consistent evolution now.

p = 9.9, e = 0.1,

q=1/8

q=1/16

q=1/24

q=1/32

q=1/48

q=1/64

(t-t0)
2 reference line

0.001 0.010 0.100 1 10 100

10-9

10-6

10-3

q2(t-t0)

|ϕ
sc
-
ϕ
ge
o
|



The state of self-consistent evolution now.

I We still have instabilities when we pass in ȧ and/or ä.

I At first we thought this was caused by extra noise in the numerical calculation of
time derivatives of the 4-acceleration.

I We experimented with smoothing finite differences (made complicated due to
time varying ∆t): Did not help much.

I We then implemented an Adams-Bashford-Moulton multi-value (ABMV) time
integrator where higher time derivatives of the variables are part of the evolution
system: Extended the run time but still instabilities.

I Question is: How important are the higher derivatives of a?

I It turns out that the ABMV scheme does allow for long evolutions if `max is not
too large. Comparing the phase evolution between runs with and without ȧ terms
may help quantify this.



The state of self-consistent evolution now.

p = 9.9, e = 0.1 (runs by Aaron Hodson, ongoing).
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Conclusions and Outlook.

I We can now do self-consistent orbits where the effective source depends on the
acceleration.

I Preliminary results consistent with the expectation that the phase error between
‘geodesic’ and ‘self-consistent’ evolutions grows as (t− t0)2 and scales as q2.

I Need to understand the numerical errors better before we can say anything
definite about the magnitude of the phase error.

I Need to finish investigation into importance of time derivatives of the
acceleration. REU student Aaron Hodson is working on this.

I Gravitational perturbation codes (Lorenz, Regge-Wheeler-Zerilli and Teukolsky)
are in various stages of development/testing.

I Currently undertaking a redesign and rewrite of the code. Once this is done, we
plan to release the code as open software (http://bhptoolkit.org?).

I Plan to extend the code to handle Kerr as well.



Teaser: New code for Teukolsky in Schwarzschild by Sarah Skinner

s = −1, ` = 1, DG-order=16.
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