Bound orbits of slowly
evolving black holes

How do orbits
react when a black
hole spacetime
slowly changes?

Based on arXiv:1806.09022

Scott A. Hughes, MIT Capra21, 28 June 2018



Motivation

Very nice paper by Isoyama & Nakano (1705.03869):
Down-horizon fluxes for post-Newtonian templates,
foundation for examining the influence of horizon
coupling on comparable mass binary black holes.

Also quantifies effect of the secular change in black
hole mass and spin due to this down-horizon flux:
Allow masses (m1, m2) and spins (s1, s2) to grow, with
growth rate determined by flux on the horizon.

Take formulas, promote mass and spin:
m1,2 = mMu,2(t)
S1,2 = S1,2(t)
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Motivation

Very nice paper by Isoyama & Nakano (1705.03869):
Down-horizon fluxes for post-Newtonian templates,
foundation for examining the influence of horizon
coupling on comparable mass binary black holes.

Also quantifies effect of the secular change in black
hole mass and spin due to this down-horizon flux:
Allow masses (m1, m2) and spins (s1, s2) to grow, with
growth rate determined by flux on the horizon.

Does this calculation correctly model how
inspiral is modified when masses and
spins change with time?
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Theorem

Consider integrable motion in a potential V.
Motion confined to the surface of a torus in phase
space, dimensions given by motion’s actions:

4 2T

Imagine potential changes: V
continually and smoothly changes
over a time interval t1 < t < t.

Take motion to be integrable at every

moment in interval; take changetobe — <« —

“slow” compared to orbital timescale T. ot I
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Theorem

Consider integrable motion in a potential V.
Motion confined to the surface of a torus in phase
space, dimensions given by motion’s actions:

1
27
Imagine potential changes: V

~ continually and smoothly changes
over a time interval t1 < t < ta.

Actions are then adiabatically invariant:
Jk > Jkas V>V +0V

(Good discussion: Binney & Tremaine, “Galactic Dynamics™)
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Theorem

Consider integrable motion in a potential V.
Motion confined to the surface of a torus in phase
space, dimensions given by motion’s actions:

-

Imagine potential changes: V
continually and smoothly changes
over a time interval t1 < t < t.

Key point for us: This theorem makes no
assumptions about “V,” other than that it admits
integrable motion and that its change is slow.

Scott A. Hughes, MIT Capra21, 28 June 2018



Theorem

Consider integrable motion in a potential V.
Motion confined to the surface of a torus in phase

space, dimensions given by motion’s actions:

Jy = — ¢ pidz”
27T

Imagine potential changes: V
/ continually and smoothly changes
over a time interval t1 < t < ta.

Often applied to orbits in Newtonian gravity,
but it applies equally well to integrable
orbits in general relativity.
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Newtonian example

Intuition: Examine implications of adiabatic
invariance for Newtonian orbits.

0 Consider a Newtonian
binary with total mass
M, reduced mass u

Orbit has semi-latus rectum p, eccentricity e
[periapsis p/[1+e], apoapsis p/(1-e)], inclination 1

Jop = p\/ Mpcost = L,

Jo = pur/Mp(1 — cos ) o=y Mp [(1 —ef) T - 1}
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Newtonian example

Imagine that the mass increases: M =& M + OM.
Orbit must adjust for actions to be fixed:
0J} OJy . OJy 0J}

OZ&Jk:a—MéM | ap5p| e oe | 9, 0L

Enforce this, dp M s _ 0 5, =0
find: P M

Orbit maintains shape, but shrinks
in response to mass growth.
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Newtonian example

This change has important implications for the
orbital frequency:

Kepler’s law M(1 —e?)3
. ) =
using (p, e): P
Change mass by oM, of) 2(5%
include change &p: Q M

Suppose we missed adiabatic 50 1 5M
invariance ... we would miss ‘gong =57
the contribution from op.
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Black hole orbits:

Circular and equatorial

For circular and equatorial black hole orbits,
J.=0 Jy=0

19 3 2,4
Jp =L, ==xprv v Tty

\/1 — 31]2 T 2&’03
[where a = S/M2, v = (M/r)1/2]
Allow M—=M + OM, S—S + 0S5, enforce invariance:
or 1=+ 3av3(1 — 2v?) — a®v*(3 — 10v?) F ba’v’ oM
roo (1 4+ av3)(1 — 6v? £+ 8av3 — 3a?v?) M

6v3(1 — 2v% F 4av?(1 — 4v?) — 6a%v” S
(1 4+ av3)(1 — 6v2 £ 8av3 — 3a’v*) M?

+
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Black hole orbits:

Circular and equatorial

For circular and equatorial black hole orbits,
J.=0 Jy=0

19 3 2,4
Jp =L, ==xprv v T aty

\/1 — 3?]2 T 2&’03
[where a = S/M2, v = (M/r)1/2]
Allow M—=M + OM, S—S + 0S5, enforce invariance:
or 1 M | 6v°(1—2v%) 6S
r 0 1—6v2 M~ 1—602 M?2

(@ — 0 limit)
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Black hole orbits: Generic

When all three actions are non-zero, enforcing
0Jk = 0 changes p, e, 1.

Organize the equations we need to solve:

O_@Jk OJy  OJy  OJ,  OJi
- OM  9S  Op  de O

Write this J.- 00 = —-0H where

(ajr/ap d.J,./Oe aJr/ab) ((8JT/8M)5M+(8JT/8S)6S>
J = SH =

0Jo/Op OJg/Oe OJy/OL (0Jo/OM)OM + (0J9/DS)6S
@J¢/8p 8J¢/86 8J¢/8L (3J¢/8M)5M—|-(8J¢/8S)5S

op
00 = | oe
0L
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Black hole orbits: Generic

When all three actions are non-zero, enforcing
0Jk = 0 changes p, e, 1.

Organize the equations we need to solve:
0Jr 0J, 0OJp 0OJp 0Jg

Y=o Tas T e T ee Ta
Write this J.- 00 = —-0H Op
50 = | de
Solve: 50 = — 1. §H St

Examples showing (Op, 0e, Oi) per unit (OM, 0S)
given in 1806.09022; Mathematica notebook
for this will be on bhptoolkit.org soon.
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Application: Back reaction on
spacetime of down-horizon flux

Go back to circular and equatorial case ... imagine,
as in Isoyama and Nakano, that the mass and spin
secularly evolve due to down-horizon flux.

Consider how orbital frequency changes due to
change to hole’s mass and spin:

0f) 0f) 0f)
5Q_8—M5M | 8555| aré’r

= uoM + 0qdS
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Application: Back reaction on
spacetime of down-horizon flux

Go back to circular and equatorial case ... imagine,
as in Isoyama and Nakano, that the mass and spin
secularly evolve due to down-horizon flux.

Imagine that increments of mass and spin
accumulate with some rate:

LY dM S
- = I OQO—F—
A T
Balance rates of growth dM oH a5 _ B

with down-horizon flux: 4t " dt
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Application: Back reaction on
spacetime of down-horizon flux

Go back to circular and equatorial case ... imagine,
as in Isoyama and Nakano, that the mass and spin
secularly evolve due to down-horizon flux.

Imagine that increments of mass and spin
accumulate with some rate:

doS? dM dsS

ar Py %%y
Integrate over inspiral, compute phase shift
0P due to secular evolution of black hole.
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Comparison: Enforcing adiabatic
invariance vs not

1.5 _I I I I I I I I I I I _

Result: Leaving out
the impact of
adiabatic invariance
underestimates the
phase shift by a
factor of roughly 20.

0.5
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Comparison: Enforcing adiabatic
invariance vs not
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Result: Leaving out
the impact of
adiabatic invariance
underestimates the
phase shift by a
factor of roughly 20.
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(Really small) x 20 = still reall;/ small.
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Possible use: Simple check of

orbit-averaged 2nd order effect

Change to orbit plus change to spacetime can
be mapped to a change in orbit integrals:

(6M,6S;6p,de, L) — (OF, Q)

These in turn can be mapped to orbit-averaged
components of some piece of the second-
order dissipative self force.

Possibly a useful result to bear in mind as
2nd order results reach the point where
they can do calculations like this.
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