Signatures of Extra Dimensions in Gravitational Waves from Black Hole Quasi-Normal Modes

Sumanta Chakraborty

IACS, Kolkata, India

21st CAPRA Meeting AEI, Potsdam 26th Jun, 2018

Sumanta Chakraborty QNM and Higher Dimensions

- Introduction to Background Spacetime.
- 2 Perturbation Equation in presence of Extra Dimensions.
- Possible signatures of extra dimensions in the Quasi-Normal Modes.

References

- SC, K. Chakravarti, S. Bose and S. SenGupta, PRD 97, 104053 (2018) [arXiv:1710.05188].
- S.S. Seahra, C. Clarkson and R. Maartens, PRL 94, 121302 (2005).

<ロ> <同> <同> <同> < 同>

Why Extra Dimensions?

- The basic motivation for existence of extra dimensions is the renormalization of Higgs mass.
- The counter-term needed for mass renormalization corresponds to,

Mass Renormalization

$$\delta m_{\rm H}^2 = \frac{\Lambda^2}{8\pi^2} \left(\lambda_{\rm H} - \lambda_{\rm F}^2 \right) + \text{log. div.} + \text{finite terms}$$

- Since the cutoff scale Λ is in the Planck regime, we must have a fine tuning of the couplings to get renormalized Higgs mass at the Electro-weak scale.
- Extra dimension is one particular method, which was invoked to solve the above issue.

イロン イヨン イヨン イヨン

The background spacetime

• The five dimensional gravitational field equations read

 When the bulk energy momentum tensor is originating from a negative cosmological constant Λ, one arrives at the following static and spherically symmetric solution on the brane,

Background Metric

$$ds_{ ext{unperturbed}}^2 = e^{-2ky} \left(-f(r)dt^2 + rac{dr^2}{f(r)} + r^2 d\Omega^2
ight) + dy^2$$

イロト イヨト イヨト イヨト

Pictorial Visualization

イロト イヨト イヨト イヨト

Effective Field Equations

T. Shiromizu, K. Maeda and M. Sasaki, PRD 62, 024012 (2000).

R. Maartens and K. Koyama, Liv. Rev. Rel. 13, 5 (2010)

• The normal $n_A = \nabla_A y$, yields the induced metric on the brane hypersurface to be $h_{AB} = g_{AB} - n_A n_B$, such that $n_A h_B^A = 0$.

Effective Field Equations

$$^{(4)}G_{\mu
u}+E_{\mu
u}=0$$

• Here $E_{\mu\nu}$ stands for a particular projection of the bulk Weyl tensor C_{ABCD} on the brane hypersurface

Weyl Stress

$$E_{\mu\nu} = C_{ABCD} e^A_\mu n^B e^C_\nu n^D$$

・ロ・ ・ 日・ ・ 日・ ・ 日・

Perturbation to first order

- Perturbation of the effective field equations around the bulk metric g_{AB} , such that $g_{AB} \rightarrow g_{AB} + h_{AB}$.
- There are redundant gauge degrees of freedom. The following gauge conditions (known as the Randall-Sundrum gauge)

Gauge Condition

$$abla_A h_B^A = 0;$$
 $h_A^A = 0;$ $h_{AB} = h_{\alpha\beta} e_A^\alpha e_B^\beta$

• The perturbed bulk metric takes the following form,

Perturbed Bulk Metric

$$ds^2_{
m perturbed} = \Big[q_{lphaeta}(y,x^\mu) + h_{lphaeta}(y,x^\mu) \Big] dx^lpha dx^eta + dy^2$$

(人間) (人) (人) (人)

The Imprints of Extra Dimensions

- The imprints of the presence of extra dimensions are through two quantities — (a) Size of the extra dimension d and (b) the bulk curvature scale ℓ = 1/k.
- The dimensionless ratio d/ℓ is an important one and if one wishes to solve the hierarchy problem we must have d/ℓ ≥ 12.
- The above model can also be written as a Brans-Dicke theory, with the Brans-Dicke parameter $\omega_{\rm bd}(d/\ell)$.
- Thus to be consistent with local physics we must have $d/\ell \ge 5$.
- Finally, the black hole mass and the bulk curvature scale has to satisfy some constraint to avoid the Gregory-Laflamme instability.

・ロン ・回と ・ヨン ・ヨン

The Evolution of Perturbations

• Assuming a separable perturbation $h_{\alpha\beta}(y, x^{\mu}) = h_{\alpha\beta}(x^{\mu})\chi(y)$, the perturbed effective equations can be decomposed into two parts:

Separability

$$e^{-2ky} \left\{ -k^2 \chi + 3k \partial_y \chi + \partial_y^2 \chi \right\} = -\mathcal{M}^2 \chi(y)$$
⁽⁴⁾ $\Box h_{\mu\nu} + 2h_{\alpha\beta} \,^{(4)} R^{\alpha \ \beta}_{\ \mu \ \nu} - \mathcal{M}^2 h_{\mu\nu} = 0$

• With $\mathcal{M} = 0$, one immediately recovers the dynamical equation governing gravitational perturbation in general relativity.

イロン イヨン イヨン イヨン

The Kaluza-Klein Mass Modes

• The equation for $\chi(y)$ is essentially Bessel's differential equation and hence it's two independent solutions are

Solutions

$$\chi(y) = e^{-\frac{3}{2}ky} \left[C_1 J_{\nu} \left(\frac{m e^{ky}}{k} \right) + C_2 Y_{\nu} \left(\frac{m e^{ky}}{k} \right) \right]$$

 The boundary conditions imposed are derivatives of χ = 0 at y = 0 and also on y = d. This leads to the following algebraic equation

KK Modes

$$Y_{\nu-1}(m_n/k)J_{\nu-1}(z_n) - J_{\nu-1}(m_n/k)Y_{\nu-1}(z_n) = 0$$

• Here $m_n = \{z_n k\}e^{-kd}$ are Kaluza-Klein mode masses.

The axial Perturbation equations on the brane

In this case there are two master variables, u_{n,l} and v_{n,l} respectively and their evolution equations read

axial perturbation

$$\mathcal{D}u_{n,l} + f(r) \Big\{ m_n^2 + \frac{l(l+1)}{r^2} - \frac{6}{r^3} \Big\} u_{n,l} + f(r) \frac{m_n^2}{r^3} v_{n,l} = 0$$

$$\mathcal{D}v_{n,l} + f(r) \Big\{ m_n^2 + \frac{l(l+1)}{r^2} \Big\} v_{n,l} + 4f(r) u_{n,l} = 0$$

• Here, \mathcal{D} is the differential operator $\partial_t^2 - \partial_{r_*}^2$, where r_* is the tortoise coordinate defined using f(r) as $dr_* = dr/f(r)$.

Table: Imaginary parts of the quasi-normal mode frequencies have been presented for $d/\ell = 20$; $1/\ell = 6 \times 10^7$.

m = 0.44, I = 2	m = 0.83, l = 2
Imaginary	Imaginary
-0.051 -0.071 -0.197 -0.239	-0.038 -0.104 -0.168 -0.369

イロン イヨン イヨン イヨン

Quasi-Normal Modes for General Relativity

Figure: Time evolution of the master mode function $u_{n,l}(t)$ associated with axial gravitational perturbation for two different values of angular momentum *l* in the context of general relativity have been depicted.

Quasi-Normal Modes — I

Figure: Time evolution of the master mode function $u_{n,l}(t)$ for general relativity (n = 0) as well as with the lowest lying Kaluza-Klein mode mass $m_1 = 0.44$ and l = 2.

A B >
 A B >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Quasi-Normal Modes — II V. Cardoso, E. Franzin and P. Pani, PRL 116, 171101 (2016)

Figure: Time evolution of the master mode function $u_{n,l}(t)$ for general relativity (n = 0) as well as with the lowest lying Kaluza-Klein mode mass $m_1 = 0.44$ and l=3.

Image: A matrix

The Late-Time Behaviour

- We have discussed how the presence of extra dimensions will modify the black hole perturbation equations.
- Possible modifications of the black hole quasi-normal modes and distinct features.
- Late time behaviour of the black hole perturbations.

- ∢ ≣ >

Thank You

Sumanta Chakraborty QNM and Higher Dimensions

・ロン ・回 と ・ ヨン ・ モン

• At late times the frequencies can be written in an analytical manner, such that,

Late Time Behaviour

$$f_n = z_n e^{27 - (d/\ell)} (0.1 \mathrm{mm}/\ell) \mathrm{Hz}$$