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Overview

EMRI evolution with EOB

Effective-one-body
…an attempted overview.

SF<—>EOB
(Gauge invariants )



Conservative PN 

H = HN +
1

c2
H1PN +

1

c4
H2PN + . . .

Conservative PN 2-body dynamics can be described using a Hamiltonian



EOB: Mapping the two systems 

2-body Taylor-expanded N + 1PN + 2PN Hamiltonian
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EOB: Mapping the two systems 

2-body Taylor-expanded 3PN Hamiltonian [JS 98, DJS 01]
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EOB in newtonian gravity.. 
very quick motivation

In Newtonian mechanics the total energy of a two body system is given by 

E =
1

2
m1v

2
1 +

1

2
m2v

2
2 �

Gm1m2

|r1 � r2|

r = r1 � r2, v = v1 � v2, M = m1 +m2, µ = m1m2/M

L = m1r1 ⇥ v1 +m2r2 ⇥ v2

E =
1

2
µv2 � GMµ

r
L = µr ⇥ v



EOB in GR and the PN approximation

In GR, the natural generalisation of this would be motion in a central  
Schwarzschild Spacetime of mass M

ge↵µ⌫dx
µdx⌫ = �A(R)c2dT 2 +B(R)dR2 +R2(d✓2 + sin2(✓)d'2)

• This can be used to define 
an effective action

• Hamilton-Jacobi equation-
Geodesics

gµ⌫e↵PµP⌫ + µ2c2 = 0

Pµ =
@Se↵

@xµ

Se↵ = �Et+ J'+ SR(R,E, J)

H
e↵ = H

e↵(R,PR, J)

[Buonanno, Damour 1998,2000]



EOB: Mapping the two systems 

H = HN +
1

c2
H1PN +

1

c4
H2PN + . . .

Conservative PN 2-body dynamics can be described using a Hamiltonian

Encode this information somehow into our test-body motion in an effective spacetime:

ge↵µ⌫dx
µdx⌫ = �A(R)c2dT 2 +B(R)dR2 +R2(d✓2 + sin2(✓)d'2)

A(R) = 1� 2
GM

c2r
+a1(⌫)

✓
GM

c2r

◆2

+ ...

gµ⌫e↵PµP⌫ + µ2c2= Q(R,Pµ) 3PN onwards

M = m1 +m2, µ = m1m2/M

[Damour Jaranowski Schaefer 2000]



EOB: Mapping the two systems 

By inverting the energy map, somehow..                                         

will be much simpler than Heob = Hreal(He↵(R,PR, J))
Hreal(r, pr, p')

(R,PR, J) , (r, pr, p')
effective coordinates PN coordinates

—> Demand canonical transformation between coordinates
pi = Pi +

1

c2
@G(p, q)

@qi

qi = Qi �
1

c2
@G(p, q)

@pi

Determines everything up to 4PN so far (modulo some freedom used to simplify!)

He↵ = f(Hreal) = Hreal(1 +
1

c2
↵1Hreal + . . .)

↵i�2 = 0



u =
GM

c2R

EOB: Mapping the two systems 

Heob = Hreal(He↵(R,PR, J))

Heob = Mc2

s

1 + 2⌫

✓
He↵

µc2
� 1

◆

He↵

µc2
=

s

A(R)

✓
1 +A(R)D(R)

P 2
R

µ2c2
+

P 2
'

µ2c2R2
+

Q(R)

µ

◆

A(u) = 1� 2u+ 2⌫u3 +

✓
94

3
� 41⇡2

32

◆
⌫u

4 +O(u5)

D(u) = 1 + 6u2
⌫ + (52⌫ � 6⌫2)u3 +O(u4)

Q(u) = q0(u)P
4
R + q1(u)P

6
R + . . .

q0(u) = 2(4� 3⌫)⌫u2 +O(u3)

D = (AB)�1



EOB: 
Equations of motion

dr

dt
=

@Hreal

@pr
,

dpr
dt

= �
@Hreal

@r
d'

dt
=

@Hreal

@p'
,

dp'
dt

= 0

dR

dt
=

@Heob

@PR
,

dPR

dt
= �

@Heob

@R
d�

dt
=

@Heob

@J
,

dJ

dt
= 0

canonical transformation

In standard coordinates the dynamics are determined by Hamiltons equations

dR

dt
=

@Heob

@PR
,

dPR

dt
= �

@Heob

@R
+ Fr

d�

dt
=

@Heob

@J
,

dJ

dt
= F'

Dissipation is included using PN circular orbits

F' =
1

�̇

dE

dt

F' = 0



EOB and gravitational self force 

what can SF offer?

…this is capra • small mass ratio, high 
accuracy, strong field

‘Easy’ to extract conservative information

fCons
µ =

1

2
(fRet

µ + fAdv
µ )

• frequency shifts, change in ISCO locations 
• periastron advances  
• redshift, spin precessions, tidal effects 



EOB and GSF: 
What do we hope to learn

A(R) = 1� 2u+ a1(⌫)u
2 + ...

D(R) = 1 + d1(⌫)u
2 + ...

A(R) = 1� 2u+ aGSF
1 (u)⌫ + aGSF

2 (u)⌫2 + ...

D(R) = 1 + dGSF
1 (u)⌫2 + ...

as PN

as GSF

e.g. from the PN series we know 

aGSF
1 (u) = 2u3 +

⇣
94
3 � 41⇡2

32

⌘
u4 + . . .



EOB and GSF: 
How do you import the information

Idea: compare ‘observables’, use gauge invariance
[Damour 09, Barack, Damour, Sago 10]

just like comparing SF codes..

Lorenz Regge-Wheeler

fµ(x) fµ(x)6=

z(x) z(x)6=

z(y) z(y)= y = (m1⌦)
2/3



EOB and GSF: 
Initial constraints: ISCO shift & periastron advance

Damour initially suggested comparing the ISCO and the periastron precession

(M⌦ISCO)
3/2 =

1

6

✓
1 + ⌫

✓
a1(1/6) +

1

6
a0
1
(1/6) +

1

18
a00
1
(1/6)

◆
⌫ + . . .

◆

=
1

6
(1 + .8342⌫ + . . .) [Barack, Sago 2009]

Likewise, the periastron advance:

⌦r

⌦'
= 1� 6y + ⌫⇢(y) + . . .

⇢(y) ⇠ a(y), a0(y), a00(y), d(y)

constrains a linear combination of the potentials 



EOB and GSF: 
First law and binding energy

�M � ⌦�J = z1�m1 + z2�m2

LeTiec et al [Le Tiec et al 2012] derived ‘1st law for binary BH’, relating Mass, AM and 
redshifts: 

SF: 
In the extreme mass ratio limit, the 1st law relates the binding energy to the redshift invariant

ESF(y) =
1

2
zSF(y)�

y

3
z0SF(y)� 1 +

p
1� 3y +

y

6

7� 24y

(1� 3y)3/2

a1sf =
p
1� 3xz1sf � x

✓
1 +

1� 4xp
1� 3x

◆
[Barausse et al 2012]

Expanding in the mass-ratio, equating the two:

E(x) ! A(x)

EOB: The Hamiltonian is the energy of the system..



EOB and GSF: First law and binding energy 
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FIG. 3: Numerical data for the doubly-rescaled function âE(x) [see Eq. (50)]. The solid line is a cubic interpolation of the
numerical data points (beads). The inset shows, on a semi-logarithmic scale, the relative numerical error in the âE data,
computed based on the estimated errors tabulated in Appendix A. Note that the relative error is between 10�8 and 10�10 over
most of the domain, and it never exceeds 10�5 (except at a single point, closest to the LR, where it is ⇠ 0.1%).

Here p � 3 and q � 1 are constant integers (see below), and {ci�2, c
log

i�4
, di, cz0, c

log

z0 , cz1} are the model parameters to
be fitted. The first few c parameters are constrained so as to reproduce all analytically available PN information:

c1 =
97

6
� 41⇡2

64
+ d1,

clog
1

= 0,

clog
2

=
32

5
,

clog
3

= �3166

105
+

32

5
d1. (53)

We do not constrain the remaining parameters to agree with the additional PN information available through numerical
fit [Eq. (45)], but rather allow our model to “re-fit” some of these high-order PN terms. We find, in general, that this
leads to improved global fits.

Our model family âfitE (x) is designed (heuristically) to capture all global features of âE(x) from x = 0 down through
the LR and (potentially) beyond. We use a Padé-type expansion in x (with logarithmic running terms), augmented
with z-dependent terms which are aimed at capturing the behavior near the LR. The latter terms are multiplied by
x3 to suppress their support in the weak field, where the known PN behavior should apply (we have tried various
powers of x and found that x3 generally works best).

The form of the z-dependent terms in (52) is motivated as follows. We have initially experimented with simple
polynomials in z (without logarithmic terms), but found that these always yielded best-fit models that possessed poles
(singularities) immediately behind the LR (i.e., just above x = 1

3
). This suggested to us that the true function âE(x)

has a remaining non-smoothness at x = 1

3
, and the form of the function suggested a weakly divergent derivative. In

our model family (52) we have attempted to represent this type of non-smoothness with a term of the form ⇠ z ln |z|,
which indeed seemed to have the e↵ect of removing the undesired pole. To allow more freedom in fitting the correct
LR behavior we have added a few higher-order terms in z and ln |z|. We experimented with a large variety of such
higher-order term combinations, and found that the form shown in (52) worked well (while minimizing the number
of extra model parameters).

Each member of our model family âfitE (x; p, q) has 2p+ q � 1 fitting parameters. In Table II we show fitting results
for a variety of p, q values (and also for models in which we remove some of the lnx terms). For each fitting model we

Akcay et al 2012

1st law + periastron advance—-> d(y)!



EOB and GSF: 
First law generalisations

He↵

µc2
=

s

A(R)

✓
1 +A(R)D(R)

P 2
R

µ2c2
+

P 2
'

µ2c2R2
+

Q(R)

µ

◆

Q(u) = q0(u)P
4
R + q1(u)P

6
R + . . .

Le Tiec 2015: First law for eccentric orbits

Binding energy now in terms of the orbit averaged redshift hzi

—-Entire non-spinning Hamiltonian just from the  
      redshift invariant

hzi = hzi0 + hzi1e2 + hzi2e4 . . .

hzi0 ! A

hzi0, hzi1 ! D

hzi0, hzi1, hzi2 ! q0

Doing a low eccentricity expansion..

etc.

[Barack Sago-11’]



EOB and GSF: 
Overview of results for non-spinning EOB-GSF

a1SF(u) d1SF(u) q1SF0 (u) q1SF1 (u)
PN 22.5 9.5 9.5 4

Numerics [1] [1,2] [2] –

e2 e4

Bini, Damour 2013, 2014, 2014, 2015, 2016  
Kavanagh, Ottewill, Wardell 2015 
Shah, Whiting, Johnson McDaniel 2015 
Hopper, Kavanagh, Ottewill 2016

PN-GSF work

Numerical work
[1] Akcay, Barack, Damour, Sago 2012 
[2] Akcay, van de Meent 2016
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near v = 0 to ⇠ 10�8 near v = 1/6. Similarly, for z̃e
2

(1)

00,

the convergence ranges from ⇠ 10�12 to ⇠ 10�5. As we
reach the edges of our numerical grid (i.e. v = 0, 1/6),
the FD derivatives su↵er from the usual edge e↵ects so
the convergence naturally jumps up by a few orders of
magnitude.

To actually compute the FD derivatives we use
Mathematica’s NDSolve‘FiniteDifferenceDerivative
function. We compute the errors for each derivative by
using the corresponding stencil formula in the standard
quadrature error computation. As the error for each grid
point is obtained independently from the others, the er-
rors are not correlated. Our routine readily works for
any derivative order and any stencil from edge points to
midpoints. Our estimated errors for z̃

e2

(1)

0(v) range from

⇠ 10�14 near v = 0 to ⇠ 10�8 near v = 1/6. Similarly,

the errors for z̃e
2

(1)

00(v) vary from ⇠ 10�11 to ⇠ 10�5.

IV. Results

A. Behavior of ze
2

(1) and ze
4

(1)

As discussed in BDG, the function z
e2

(1)
(v) becomes sin-

gular as it approaches the innermost stable circular orbit
(ISCO) at v = 1/6. Our data confirms that ze

2

(1)
(v) has a

simple pole at v = 1/6. Moreover, we are able to numer-
ically extract the first few terms of its Laurent expansion,

z
e2

(1)
=

1X

i=�1

c
e2

i (1� 6v)i, (4.1)

with

c
e2

�1
= +0.01364554556(2),

c
e2

0
= �0.116733823(2),

c
e2

1
= �0.0910091(4),

c
e2

2
= +0.519971(2),

c
e2

3
= �0.8245(3),

c
e2

4
= +1.1503(5),

c
e2

5
= �1.45(2), and

c
e2

6
= +1.9(4),

(4.2)

where the number in parentheses indicates the approx-
imate error. Based on older self-force data BDG provide
the estimates c

e2
�1

⇡ 0.0136455 and c
e2
0

⇡ �0.116733,
which fully agree with our values. They also correctly
conclude that since z

e2

(1)
(v) is negative in the weak-field

limit, it must change sign (at least once) between v = 0
and v = 1/6. They estimate that this happens at
p = 1/v ⇡ 6.760. Our data yields 6.759785(2).
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Figure 1. Absolute di↵erences in d̄(v) between our numer-
ical data and BDG’s corresponding pN series. The green
dots, blue squares and red diamonds represent the di↵erence
between our data and the 4, 5.5, 6.5 pN expressions, respect-
ively. The corresponding green, blue, red lines are fits that
scale as v5, v6, v7, respectively. The black triangles show the
di↵erence between our data and BDG’s Padé fit. The dashed
black curve (�d̄) is our estimated absolute error for d̄(v).

The analysis of BDG also indicates that z
e4

(1)
(v) has a

third order pole at v = 1/6. Our data again confirms
this conclusion giving the following Laurent expansion,

z
e4

(1)
=

1X

i=�3

c
e4

i (1� 6v)i, (4.3)

with coe�cients together with the estimates provided by
BDG.

Here BDG

c
e4
�3

+0.000426423298976(4) +0.0004263

c
e4
�2

�0.00127926989693(1) �0.001279

c
e4
�1

+0.00073197(1) +0.0006447

c
e4
0

�0.0942532(3) �0.09396

c
e4
1

+0.30778(7) +0.3435

c
e4
2

�0.315(3)

The first two estimates of BDG appear to be spot on.
However, their estimates for c

0
��1 significantly di↵er

from our extracted values. This could be due to the lack
of high-accuracy data available to BDG at the time of
their computation. Finally, let us add that z

e4

(1)
(v) also

changes sign in the interval v 2 [0, 1/6]. This happens
approximately at v = 0.1391647400(1). We are able to
obtain more significant digits for this approximation com-
pared with the sign change of ze

2

(1)
(v) because the sign

change happens farther away from the ISCO.

B. The potential d̄(v)

From z
e0

(1)
(v) and z

e2

(1)
(v) we calculate d̄(v) using

Eq. (2.25). BDG have provided a pN series expansion



EOB and GSF: Spinning EOB & spin precessions 

H(R,P, S1, S2) = Mc2

s

1 + 2⌫

✓
He↵

µc2
� 1

◆

He↵ = H
O

e↵
+H

SO

e↵ S = S1 + S2

S⇤ =
m2

m1
S1 +

m1

m2
S2H

SO

e↵
=

G

c2R3
(gSL · S+ gS*L · S⇤)

effects from the big BHgS :

Bini, Damour 2016: use first law w/spinning binaries [Blanchet et al 2013] 

Spin corrections to  A, gS
Both as high PN, and using strong field data of Shah et al (all circular)

effects from the small BHgS⇤ :

Use the GSF spin precession invariant : Dolan et al 2014



EOB and GSF: Spinning EOB & spin precessions 

dSa

dt
= {H,Sa}

= ⌦Sa ⇥ Sa

⌦Sa =
@H

@Sa

Set up same situation as SF spin precession calculation:

S1 ⌧ 1, S2 = 0, L · S = P's

[Bini, Damour]:  =
⌦S1

⌦'

 Extract SF info by equating 

O(⌫) piece of  EOB � 
(via gauge inv. parameterisation.)



EOB and GSF: Spinning EOB & spin precessions, 
everything else

[Akcay, Dolan, Dempsey 2016]- Eccentric generalization of GSF spin precession (schw)

[Akcay 2017]- Eccentric spin prec in Kerr (formulation)

gS⇤ = g0S⇤ + g1S⇤P
2
R + . . .

h� i = h� i0 + h� i1e2 + . . .

GSF tidal invariants
[Dolan et al 2015]

Tidal EOB
[Bini, Damour 2015]



EOB and GSF: 
Lightring behaviour

See Andrea Antonelli next!



EOB and EMRI evolution: 
why?

meeting point of NR, PN and SF

conservative information is neatly packaged in gauge invariant manner

it’s a different method



EOB and EMRI evolution: 
Yunes et al 2010: Quasi-circular equatorial inspiral, Kerr

Include conservative PN information in the EOB hamiltonian

dR

dt
=

@Heob

@PR
,

dPR

dt
= �

@Heob

@R
d�

dt
=

@Heob

@J
,

dJ

dt
= F'

Heob —3PN conservative info via A,D

F' —Semi-analytic Teukolsky fluxes (PN/calibrated PN)

F' =
1

�̇

dE

dt

dE

dt
=

✓
dE

dt

◆nPN

+ (a1 + a2log(u))u
(n+1)PN

Fit to high accuracy numerics



EOB and EMRI evolution: 
Yunes et al 2010: Quasi-circular equatorial inspiral, Kerr

4

10-4
10-3
10-2
10-1
100
101
102

P-flux 5.5PN (uncal)
P-flux 6.5PN (cal)
ρ−flux 5.5PN (uncal)
ρ-flux 6PN (cal)
ρ-flux 6PN (cal) PN self-force

0 2 4 6 8 10 12 14 16 18 20 22 24
t [Months]

10-4
10-3
10-2
10-1
100
101
102

|φ
22Te

uk
-φ

22EO
B | [

ra
ds

]

system-I

system-II

10-4

10-3

10-2

P-flux 5.5PN (uncal)
P-flux 6.5PN (cal)
ρ-flux 5.5PN (uncal)
ρ-flux 6PN (cal)
ρ-flux 6PN (cal) PN self-force

0 2 4 6 8 10 12 14 16 18 20 22 24
t [Months]

10-2

10-1

100

|A
22Te

uk
-A

22EO
B |/A

22Te
uk

 [%
]

system-I

system-II

FIG. 2: Absolute value of the dephasing (left) and fractional amplitude difference (right) of the dominant GW (2, 2) mode as a
function of time in months. Again, with the introduction of calibrated higher-order terms, the differences are small even over
a full two year coherent integration.

system-II. Such a phase and amplitude agreement is fan-
tastic when one takes into account the 2-year length of
observation, during which the binary of system-I (system-
II) evolves over ∼ 2 × 106 (∼ 9 × 105) rads. Quite in-
terestingly, we find that if we switch on the relative ν
terms in the 3PN EOB Hamiltonian Eq. (1) (conserva-
tive self-force) and in the flux (dissipative self-force1) the
dephasing, for the EOB-model with ρ-flux at 6PN, in-
creases to ∼ 27 (6) rads for system-I (system-II), while
the Newtonian normalized amplitude difference increases
to 4× 10−4 (2.5× 10−3) for system-I (system-II). We no-
tice that the main effect comes from the dissipative self-
force, a result consistent with [30] for circular orbits (see
e.g. [31–33] for more details on the PN self-force).
We also compare the strongest higher harmonics us-

ing the EOB model with Padé-flux at 6.5PN. In the case
of the (ℓ,m) = (3, 3) and (ℓ,m) = (4, 4) modes we find
dephasings of ∼ 0.14 (0.07) and ∼ 0.18 (0.09) rads, and
normalized amplitude differences of ∼ 6×10−5 (4×10−3)
and ∼ 3 × 10−4 (9 × 10−3), for system-I (system-II).
These dephasings are comparable to those found for the
(ℓ,m) = (2, 2) mode because in both frameworks the GW
phase (and frequency) can be computed directly from the
orbital phase (and frequency), up to errors of less than
∼ 1 rad over a 2-year integration. As a consequence,
the above comparisons are almost entirely governed by
the trajectories of the test particle. Finally, we find
that higher harmonics contribute significantly less to the
signal-to-noise ratio relative to the (2, 2) mode. In par-
ticular, we computed the signal-to-noise ratio averaged
over beam-pattern functions with a noise spectral den-
sity that includes white-dwarf confusion noise. Including

1 Sometimes all of the energy loss due to radiation, is considered
part of the dissipative force (even the ν = 0 part), but here we
refer only to the ν-dependent terms in the flux.

up to ℓ = 5 (ℓ = 7) for system-I (system-II) guarantees
a recovery of 97% of the total signal-to-noise ratio, with
the ℓ = m modes the most dominant.

Data Analysis Implications and Discussion. The above
results have demonstrated that the EOB framework can
be used to model EMRIs for LISA data analysis pur-
poses, with the advantage of allowing for the consistent
inclusion of both dissipative and conservative PN self-
force terms. In addition, such terms allow the construc-
tion of waveforms from intermediate-mass ratio inspirals,
where first-order BH perturbation theory is expected to
fail. The comparisons made here, however, serve only
as a proof-of-principle, as one must now generalize the
formalism to more generic spinning EMRIs, and more
complicated orbital geometries.

The EOB framework also allows us to provide, for
the first time, a metric-based estimate of the number of
templates needed for EMRI systems in LISA data anal-
ysis [24, 34]. As a coherent 2-year integration in the
search of EMRIs is computationally prohibitive, a hier-
archical search that collects power from coherent searches
of shorter segments was proposed in [1]. The maximum
segment length set by computational limits in such a hi-
erarchical search is estimated to be less than 2 months.
For a 2-month evolution, we estimate that one requires
less than 107 EOB templates to cover the template bank
with a minimal match of 0.97 in the total mass range
(105–106)M⊙ and mass ratio range (10−4–10−5).
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With conservative SF turned on in the EOB potentials, found ~6-27 rad phase difference/two 
year inspiral



EOB and EMRI evolution: 
Up to date information
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EOB and EMRI evolution: 
Preliminary-eccentric inspiral
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These are reallllly slow to evolve.. SEE N Warburton tomorrow! 



EOB and EMRI evolution: 
Preliminary-eccentric inspiral

Using action angle-type variables
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(similar to Hinderer & Barak 2017)

using numerical SF data



EOB and EMRI evolution: 
Preliminary-eccentric inspiral
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Two plots— Using PN+strong field data for a,d, q potentials

Using purely high order PN
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Conclusions/what’s next 

No eccentric effects yet transcribed in Kerr

To date, all work assumed aligned spins Equatorial orbits

Generic orbit informations is becoming available [See van de Meent]

Can the SF equations of motion be formulated with conservative information only 
entering in a gauge invariant manner?

Current formulations of EOB are divergent at the light-ring (see next talk?)

Deeper understanding needed of inclusion of radiation reaction

obvious questions:

How does conservative PN SF fare in a ‘proper’ self-force inspiral?


